Abstract:
An ignition apparatus of an engine includes a spark plug disposed in a combustion chamber, and configured to generate a spark discharge between a center electrode and a ground electrode, a plurality of ignition coils each applying a current to the spark plug and including a primary coil, a secondary coil, a main switch, and an auxiliary switch, and a controller selectively performing a multi-stage ignition through a first ignition coil and a second ignition coil or a single-stage ignition through one ignition coil among the first ignition coil and the second ignition coil, adjusting a charging speed, a number of discharges, and a discharge maintaining period of the ignition coil depending on a driving point of the engine, and adjusting the charging speed of the ignition coil and a target air/fuel ratio for performing a lean combustion, based on a state of charge of a battery.
Abstract:
A multi-ignition coil control system includes a spark plug including first and second center electrodes, and first and second ground electrodes spaced apart from the center electrodes by a predetermined distance, a first ignition coil including a primary coil, and a secondary coil in which a discharge current is generated by electromagnetic induction with the primary coil, and a second ignition coil including a primary coil, and a secondary coil in which a discharge current is generated by electromagnetic induction with the primary coil, wherein one end of the secondary coil of the first ignition coil and one end of the secondary coil of the second ignition coil are electrically connected to one of the center electrodes, and the other end of the secondary coil of the first ignition coil and the other end of the secondary coil of the second ignition coil are electrically connected to the other of the center electrodes.
Abstract:
A spark plug includes a metal body member formed of a metal material, an insulating body member provided inside the metal body member and formed of an insulating material, a pair of central electrodes provided inside the insulating body member and having different polarities, and a ground electrode extending from the metal body member between a pair of central electrodes.
Abstract:
An ignition coil control system may include a first ignition coil including a primary coil and a secondary coil; a first switch that selectively electrically-connects the primary coil of the first ignition coil; a second ignition coil including a primary coil and a secondary coil; a second switch that selectively electrically-connects the primary coil of the second ignition coil; a pair of electrodes generating spark discharge by a discharge current generated in the first ignition coil and the second ignition coil; and an ignition controller that controls spark discharge of the pair of electrodes by adjusting an amount and a duration of the discharge current of the first ignition coil and the second ignition coil by turning the first switch and the second switch on or off according to a single pulse signal having a constant voltage including different voltages transmitted from an engine control unit (ECU).
Abstract:
A multiple variable valve lift apparatus may include a moving cam formed of a hollow cylindrical shape, configured to be moveable in an axial direction of a camshaft while being rotated with the camshaft, and forming a plurality of cams implementing a cam guide protrusion device and different valve lifts from each other; an operation device selectively guiding a cam guide protrusion device to move the moving cam in the axial direction of the camshaft; a controller configured for controlling an operation of the operation device; a valve opening/closing device in contact with any one cam among the plurality of cams; a plurality of stopper grooves formed at an external circumference of the camshaft; and a stopper device provided at the moving cam and inserted to the stopper groove to be rotated at a position after the moving cam is moved.
Abstract:
A multiple variable valve lift apparatus may include a moving cam formed of a hollow cylindrical shape, configured to be moveable in an axial direction of a camshaft while being rotated with the camshaft, and forming a plurality of cams implementing a cam guide protrusion device and different valve lifts from each other; an operation device selectively guiding a cam guide protrusion device to move the moving cam in the axial direction of the camshaft; a controller configured for controlling an operation of the operation device; a valve opening/closing device in contact with any one cam among the plurality of cams; a plurality of stopper grooves formed at an external circumference of the camshaft; and a stopper device provided at the moving cam and inserted to the stopper groove to be rotated at a position after the moving cam is moved.
Abstract:
A variable compression ratio apparatus mounted on an engine configured to receive combustion force of a mixer from a piston to rotate a crankshaft, and configured to change a compression ratio of the mixer may include an eccentric bearing assembly connected with the piston through a piston pin, and including an eccentric ring including an eccentric hole through which the piston pin passes so that the piston pin may be rotatably installed while being eccentric to the eccentric ring, and an eccentric link connected to the eccentric ring to transfer rotation force thereof to the eccentric ring, a connecting rod including one end provided with a mounting hole into which the eccentric ring may be rotatably inserted, a central portion provided with an operation hole, wherein the eccentric link may be movable through the operation hole, and the other end rotatably connected to the crankshaft while being eccentric to the crankshaft, and a control shaft connected to the eccentric link and configured to rotate the eccentric bearing assembly.
Abstract:
An engine system may include main exhaust ports fluidly communicated with each combustion chamber, main exhaust valves opening and closing each main exhaust port, a main exhaust manifold connected with the main exhaust ports, scavenge exhaust ports fluidly communicated with the each combustion chamber, scavenge valves opening and closing the each scavenge exhaust port, a scavenge manifold connected with the scavenge exhaust ports, in which at least a part of an exhaust gas passing through the scavenge manifold is re-circulated to the combustion chamber to be burned.
Abstract:
A multiple variable valve lift apparatus may include a camshaft rotating by drive of an engine, at least two cam portions slidably disposed on the camshaft and rotatable together with the camshaft, and forming a high cam and a low cam, a valve opening/closing unit operated by one of the high or low cams, at least two operating unit movable along the camshaft to move the at least two cam portions along the camshaft, a control portion selectively moving the operating unit along the camshaft, a pin disposed at the control portion, and a guide rail formed in a groove shape on an exterior circumference of the operating unit such that the pin is insert therein and guiding relative movement of the pin according to rotation of the camshaft and the operating unit such that the operating unit is moved along an axial direction of the camshaft by the pin.
Abstract:
A continuous variable valve lifter having a cylinder air volume difference adjuster includes a camshaft having an input cam, an eccentric control shaft disposed parallel to the camshaft, and a control link rotatable around the eccentric control shaft. An output cam is provided to open and close a valve actuator for opening/closing, and a connection link is rotatably connected to the control link, and driving the output cam by the rotation of the input cam. A cam cap is disposed where the camshaft and the eccentric control shaft are mounted.The cylinder air volume difference adjuster includes a hinge pin serving as the rotational center of the output cam disposed parallel to the camshaft, a pin holder where the hinge pin is mounted, and an adjusting bolt for selectively shifting the position of the pin holder.