摘要:
A protection circuit and a photoelectric conversion device are provided, each of which includes a first wiring, a second wiring, a first switch, a second switch, a capacitor, and a comparing circuit configured to generate a signal corresponding to a potential of the first wiring and a potential of the second wiring, and supply the signal to the first switch and the second switch. The first wiring is electrically connected to a first terminal of the first switch, and the second wiring is electrically connected to a first terminal of the second switch. A second terminal of the first switch is electrically connected to a first electrode of the capacitor, and a second terminal of the second switch is electrically connected to a second electrode of the capacitor.
摘要:
A semiconductor device has a structure including the first semiconductor region 103 which is provided in the first terminal portion 100 and includes the first n-type impurity region 106, the first resistance region 107 provided at an inner periphery portion of the first n-type impurity region 106 in a plane view, and the first p-type impurity region 108 provided at an inner periphery portion of the first resistance region 107 in the plane view, and the second semiconductor region 104 which is provided in the second terminal portion 101 and includes the second p-type impurity region 109, the second resistance region 110 provided at an inner periphery portion of the second p-type impurity region 109 in the plane view, and the second n-type impurity region 111 provided at an inner periphery portion of the second resistance region 110 in the plane view.
摘要:
A display device which can compensate for variations of the threshold voltage of transistors and suppress variations in luminance, and a driving method thereof are provided. Current is supplied to a light emitting element and light is emitted from the light emitting element by following steps: in the first period initial voltage is stored in a storage capacitor; in the second period, voltage based on video signal voltage and the threshold voltage of the transistor is stored in the storage capacitor; and in the third period, the voltage stored in the storage capacitor in the second period is applied to a gate electrode of the transistor. By these operation processes, the current which compensates the effect of the variations of the threshold voltage of the transistor can be supplied to the light emitting element. Therefore, variations in luminance are suppressed.
摘要:
One feature of the present invention includes first to third steps of holding a voltage, corresponding to a difference between a voltage applied to a first power supply line and a threshold voltage of a first transistor, between both electrodes of first and second storage capacitors; holding a voltage, corresponding to a difference between a voltage applied to the first power supply line and a gate-source voltage of the first transistor, which is necessary to supply a light-emitting element with a current equivalent to a video signal current inputted into a signal line, between both the electrodes of the second storage capacitor; and applying a voltage based on the voltage held in the first and second storage capacitors in the first and second steps to a gate electrode of the first transistor; therefore, a current is supplied to the light-emitting element through the first transistor.
摘要:
One feature of the present invention includes first to third steps of holding a voltage, corresponding to a difference between a voltage applied to a first power supply line and a threshold voltage of a first transistor, between both electrodes of first and second storage capacitors; holding a voltage, corresponding to a difference between a voltage applied to the first power supply line and a gate-source voltage of the first transistor, which is necessary to supply a light-emitting element with a current equivalent to a video signal current inputted into a signal line, between both the electrodes of the second storage capacitor; and applying a voltage based on the voltage held in the first and second storage capacitors in the first and second steps to a gate electrode of the first transistor; therefore, a current is supplied to the light-emitting element through the first transistor.
摘要:
To improve the performance of a protection circuit including a diode formed using a semiconductor film. A protection circuit is inserted between two input/output terminals. The protection circuit includes a diode which is formed over an insulating surface and is formed using a semiconductor film. Contact holes for connecting an n-type impurity region and a p-type impurity region of the diode to a first conductive film in the protection circuit are distributed over the entire impurity regions. Further, contact holes for connecting the first conductive film and a second conductive film in the protection circuit are dispersively formed over the semiconductor film. By forming the contact holes in this manner wiring resistance between the diode and a terminal can be reduced and the entire semiconductor film of the diode can be effectively serve as a rectifier element.
摘要:
It is an object to provide a protection circuit and a semiconductor device to which a countermeasure against ESD is applied. The protection circuit includes a signal line electrically connected to an integrated circuit; a first diode provided between the signal line and a first power supply line; a second diode provided in parallel to the first diode; and a third diode provided between the first power supply line and a second power supply line. The first diode is a diode formed by diode-connecting a transistor, and the second diode is a diode having a PIN junction or a PN junction. The protection circuit is particularly effective when applied to a semiconductor device manufactured using a thin film transistor.
摘要:
A plurality of transistors in which ratios of a channel length L to a channel width W, α=W/L, are different from each other is provided in parallel as output side transistors 105a to 105c in a current mirror circuit 101 which amplifies a photocurrent of a photoelectric conversion device and an internal resistor is connected to each of the output side transistors 105a to 105c in series. The sum of currents which flow through the plurality of transistors and the internal resistor is output, whereby a transistor with large amount of α can be driven in a linear range with low illuminance, and a transistor with small amount of α can be driven in a linear range with high illuminance, so that applicable illuminance range of the photoelectric conversion device can be widened.
摘要翻译:在通过放大光电流的电流镜电路101中,作为输出侧晶体管105a〜105c并联设置多个晶体管,其中沟道长度L与沟道宽度W,α= W / L的比例彼此不同 的一个光电转换装置和一个内部电阻器串联连接到每个输出侧晶体管105a至105c。 输出流过多个晶体管的电流和内部电阻器的总和,由此可以以低照度在线性范围内驱动具有大量α的晶体管,并且可以在a中驱动具有少量α的晶体管 具有高照度的线性范围,可以扩大光电转换装置的适用照度范围。
摘要:
A display device includes a display panel including a plurality of pixels, a shutter panel including a driver circuit, a liquid crystal, and light-transmitting electrodes provided in a striped manner, and a positional data detector configured to detect a positional data of a viewer. The shutter panel is provided over a display surface side of the display panel, a width of one of the light-transmitting electrodes in the shutter panel is smaller than that of one of the plurality of pixels, and the driver circuit in the shutter panel is configured to selectively output signals for forming a parallax barrier to the light-transmitting electrodes. The parallax barrier is capable of changing its shape in accordance with the detected positional data.
摘要:
An object is to provide a driving method of a liquid crystal display device with a low power consumption and a high image quality. A pixel includes a liquid crystal element and a transistor which controls supply of an image signal to the liquid crystal element. The transistor includes, in a channel formation region, a semiconductor which has a wider band gap than a silicon semiconductor and has a lower intrinsic carrier density than silicon, and has an extremely low off-state current. In inversion driving of pixels, image signals having opposite polarities are input to a pair of signal lines between which a pixel electrode is disposed. By employing such a structure, the quality of the displayed image can be increased even in the absence of a capacitor in the pixel.