Abstract:
A liquid crystal display device includes: a driver circuit portion; a pixel portion; a signal generation circuit for generating a control signal for driving the driver circuit portion and an image signal which is supplied to the pixel portion; a memory circuit; a comparison circuit for detecting a difference of image signals for a series of frame periods among image signals stored for respective frame periods in the memory circuit; a selection circuit which selects and outputs the image signals for the series of frame periods when the difference is detected in the comparison circuit; and a display control circuit which supplies the control signal and the image signals output from the selection circuit, to the driver circuit portion when the difference is detected in the comparison circuit, and stops supplying the control signal to the driver circuit portion when the difference is not detected in the comparison circuit.
Abstract:
The display device includes a first pixel, a second pixel, and a third pixel each including a first transistor, a second transistor, and a light-emitting element. In each of the first to third pixels, a first terminal of the first transistor is electrically connected to a signal line, a second terminal of the first transistor is electrically connected to a gate of the second transistor, a first terminal of the second transistor is electrically connected to a power supply line and a second terminal of the first transistor is electrically connected to the light-emitting element. A gate of the first transistor in the first pixel is electrically connected to a first scan line. A gate of the first transistor in the second pixel is electrically connected to a second scan line. A gate of the first transistor in the third pixel is electrically connected to a third scan line.
Abstract:
It is an object to provide a specific driving method for reduction in power consumption in displaying a 3D image with field sequential driving. A driving method of a liquid crystal display device is a method in which a stereoscopic image can be perceived with a liquid crystal display device switching an image for a left eye and an image for a right eye to display the image for the left eye or the image for the right eye, and a pair of glasses having a switching means with which the image for the right eye and the image for the left eye are switched in synchronization with display of the image for the left eye or the image for the right eye in order that the left or right eye of a viewer may selectively perceive the image for the left eye or the image for the right eye; the image for the left eye and the image for the right eye are perceived by the left eye or right eye in a mixed color by switching light which is emitted from a backlight portion and which corresponds to a plurality of colors, within a predetermined period, and the light which is emitted from the backlight portion are continuously emitted in accordance with an image signal of each of a plurality of colors which forms the image for the left eye and the image for the right eye.
Abstract:
A semiconductor device including a non-volatile memory cell including a writing transistor which includes an oxide semiconductor, a reading transistor which includes a semiconductor material different from that of the writing transistor, and a capacitor is provided. Data is written or rewritten to the memory cell by turning on the writing transistor and supplying a potential to a node where a source electrode (or a drain electrode) of the writing transistor, one electrode of the capacitor, and a gate electrode of the reading transistor are electrically connected to each other, and then turning off the writing transistor so that the predetermined amount of charge is held in the node. Further, when a transistor whose threshold voltage is controlled and set to a positive voltage is used as the reading transistor, a reading potential is a positive potential.
Abstract:
It is an object to provide a specific driving method for reduction in power consumption in displaying a 3D image with field sequential driving. A driving method of a liquid crystal display device is a method in which a stereoscopic image can be perceived with a liquid crystal display device switching an image for a left eye and an image for a right eye to display the image for the left eye or the image for the right eye, and a pair of glasses having a switching means with which the image for the right eye and the image for the left eye are switched in synchronization with display of the image for the left eye or the image for the right eye in order that the left or right eye of a viewer may selectively perceive the image for the left eye or the image for the right eye; the image for the left eye and the image for the right eye are perceived by the left eye or right eye in a mixed color by switching light which is emitted from a backlight portion and which corresponds to a plurality of colors, within a predetermined period, and the light which is emitted from the backlight portion are continuously emitted in accordance with an image signal of each of a plurality of colors which forms the image for the left eye and the image for the right eye.
Abstract:
A display device includes a display panel including a plurality of pixels, a shutter panel including a driver circuit, a liquid crystal, and light-transmitting electrodes provided in a striped manner, and a positional data detector configured to detect a positional data of a viewer. The shutter panel is provided over a display surface side of the display panel, a width of one of the light-transmitting electrodes in the shutter panel is smaller than that of one of the plurality of pixels, and the driver circuit in the shutter panel is configured to selectively output signals for forming a parallax barrier to the light-transmitting electrodes. The parallax barrier is capable of changing its shape in accordance with the detected positional data.
Abstract:
Provided is to secure a data-writing period to a source line and reduce the number of the IC chips used. N image data (e.g., three image data, RGB) are sequentially input to one input terminal. Three switches, three first memory elements, three transfer switches, three second memory elements, and three buffers are connected in parallel to the input terminal. The three switches are turned on respectively. RGB image data are held in the three respective first memory elements. In a selection period of a gate line of an (m−1)-th row, image data of an m-th row are written to the first memory elements. When the three transfer switches are turned on in a selection period of a gate line of an m-th row, the image data are transferred to and held in the second memory elements. Then, the image data are output to each source line through each buffer.
Abstract:
It is an object to provide a transmissive liquid crystal display device in which power consumption is reduced and deterioration in display quality is suppressed. As a backlight, a surface-emission light source is employed. The light source is a light source which performs surface light emission, so that the light emission area is large. Accordingly, the backlight can effectively radiate heat. Thus, even in the case where an image signal is not input to a pixel for a long period, the pixel can hold the image signal. In other words, both a reduction in power consumption and a suppression of deterioration in display quality can be realized.
Abstract:
To provide a liquid crystal display device which can perform image display in both modes: a reflective mode where external light is used as an illumination light source; and a transmissive mode where a backlight is used. In one pixel, a region where incident light through a liquid crystal layer is reflected to perform display (reflective region) and a region through which light from the backlight passes to perform display (transmissive region) are provided, and image display can be performed in both modes: the reflective mode where external light is used as an illumination light source; and the transmissive mode where the backlight is used as an illumination light source. In addition, two transistors connected to respective pixel electrode layers are provided in one pixel, and the two transistors are separately operated, whereby display of the reflective region and display of the transmissive region can be controlled independently.
Abstract:
To improve the image quality of a liquid crystal display device. In the liquid crystal display device, writing of an image signal and the turning on the backlights are not sequentially performed in the entire pixel portion but are sequentially performed per specific region of the pixel portion. Thus, it is possible to increase the frequency of input of an image signal to each pixel of the liquid crystal display device. Accordingly, deterioration of display such as color break generated in the liquid crystal display device can be suppressed, and the image quality can be improved.