摘要:
Described herein are solar modules including spectral concentrators. In one embodiment, a solar module includes an active layer including a set of photovoltaic cells. The solar module also includes a spectral concentrator optically coupled to the active layer and including a luminescent material that exhibits photoluminescence in response to incident solar radiation. The photoluminescence has: (a) a quantum efficiency of at least 30 percent; (b) a spectral width no greater than 100 nm at Full Width at Half Maximum; and (c) a peak emission wavelength in the near infrared range.
摘要:
Luminescent materials and the use of such materials in anti-counterfeiting, inventory, photovoltaic, and other applications are described herein. In one embodiment, a luminescent material has the formula: [AaBbXxX′x′X″x″][dopants], wherein A is selected from at least one of elements of Group IA; B is selected from at least one of elements of Group VA, elements of Group IB, elements of Group IIB, elements of Group IIIB, elements of Group IVB, and elements of Group VB; X, X′, and X″ are independently selected from at least one of elements of Group VIIB; the dopants include electron acceptors and electron donors; a is in the range of 1 to 9; b is in the range of 1 to 5; and x, x′, and x″ have a sum in the range of 1 to 9. The luminescent material exhibits photoluminescence having: (a) a quantum efficiency of at least 20 percent; (b) a spectral width no greater than 100 nm at Full Width at Half Maximum; and (c) a peak emission wavelength in the near infrared range.
摘要翻译:本文描述了发光材料以及这些材料在防伪,库存,光伏和其它应用中的用途。 在一个实施方案中,发光材料具有以下分子式:[A a] a B b B x X x'x' “掺杂剂”,其中A选自组IA的至少一个元素; B选自VA组的元素,IB组元素,IIB族元素,IIIB族元素,IVB族元素和VB族元素中的至少一种; X,X'和X“独立地选自VIIB族元素中的至少一种; 掺杂剂包括电子受体和电子给体; a在1到9的范围内; b在1〜5的范围内; 并且x,x'和x“具有在1至9范围内的和。发光材料表现出光致发光,其具有:(a)至少20%的量子效率; (b)半宽度全宽下的光谱宽度不大于100nm; 和(c)近红外范围的峰值发射波长。
摘要:
A metal oxide semiconductor (MOS) varactor device has a source and a drain connected to each other, and a back gate, electrically separate from the source and drain, which is connected to a circuit common mode point.
摘要:
A method for calibrating a clock and data recovery circuit may include configuring a phase detector as a bang-bang phase detector. The bang-bang phase detector may be used to determine a phase difference between a sampling clock provided by an interpolator and a calibration signal. The phase detector may also be configured as a linear phase detector. While using the linear phase detector, a linear phase detector parameter may be adjusted such that the phase difference between the calibration signal and the sampling clock is zero, while keeping the phase of the sampling clock fixed.
摘要:
Apparatus and methods for rotational frequency detection are disclosed. In one embodiment, a rotational frequency detector is configured to receive samples taken from a serial data stream and to generate a frequency up error signal or a frequency down error signal. The rotational frequency detector processes a first set of samples to generate first transition data, which may be stored in a memory. The rotational frequency detector processes a second and third set of samples to generate second and third transition data. The frequency up or frequency down error signal is generated based at least partly on the first, second or third transition data. This configuration can reduce the maximum operating frequency of the rotational frequency detector, thereby simplifying the rotational frequency detector design to a point that a conventional static digital CMOS circuit design flow can be used to design the rotational frequency detector.
摘要:
Apparatus and methods for clock and data recovery are disclosed. In one embodiment, a clock and data recovery system includes a sampler, a deserializer, a phase detector and a frequency detector. The sampler may be configured to sample a serial data stream to produce data samples and transition samples. The deserializer may be configured to deserialize the data samples and the transition samples to produce deserialized data samples and deserialized transition samples. The deserialized data samples and the deserialized transition samples can be aligned and provided to the phase detector and the frequency detector, thereby improving phase alignment and cycle slip detection.
摘要:
Luminescent materials and methods of forming such materials arc described herein. In one embodiment, a luminescent material has the formula: [AaSnbXxX′x′X″x″][dopant], wherein A is included in the luminescent material as a monovalent cation; X, X′, and X″ are selected from fluorine, chlorine, bromine, and iodine; a is in the range of 1 to 5; b is in the range of 1 to 3; a sum of x, x′, and x″ is a +2b; and at least X′ is iodine, such that x′(a+2b)≧1/5.
摘要:
Luminescent materials and the use of such materials in anti-counterfeiting, inventory, photovoltaic, and other applications are described herein. In one embodiment, a method of forming a luminescent material includes: (1) providing a source of A and X, wherein A is selected from at least one of elements of Group IA, and X is selected from at least one of elements of Group VIIB; (2) providing a source of B, wherein B is selected from at least one of elements of Group IVB; (3) subjecting the source of A and X and the source of B to vacuum deposition to form a set of films adjacent to a substrate; and (4) heating the set of films to a temperature in the range of 120° C. to 350° C. to form a luminescent material adjacent to the substrate, wherein the luminescent material includes A, B, and X.
摘要:
Described herein are solar modules including spectral concentrators. In one embodiment, a solar module includes a set of photovoltaic cells and a spectral concentrator optically coupled to the set of photovoltaic cells. The spectral concentrator is configured to: (1) collect incident solar radiation; (2) convert the incident solar radiation into substantially monochromatic, emitted radiation; and (3) convey the substantially monochromatic, emitted radiation to the set of photovoltaic cells.
摘要:
A signal is transmitted into a computer in response to an image on a display screen of the computer such that the computer operates in response to the signal; this includes moving a scanner in optical communication with the display screen such that the scanner detects an image (for example, a bar code) displayed on the screen and generates the signal in response. One or more computers may be used, and this may be used for vending a product or other purposes. With or without such scanning, a portion of a store environment may be displayed on a screen of a computer, including showing images of actual products for sale at the store, in which images of actual products are accessed via the computer from a database containing in-store images recorded in the store during a period of non-existent or minimal customer presence in the store. A vending system is also disclosed.