摘要:
A light source comprises: (a) a source of plasma discharge that emits electromagnetic radiation, a portion of which has wavelengths shorter than about 200 nm; and (b) a phosphor composition that comprises particles, each of the particles comprising at least a first phosphor and at least a second phosphor, the phosphor composition is disposed such that the first phosphor absorbs substantially the portion of EM radiation having wavelengths shorter than about 200 nm, and the first phosphor emits EM radiation having wavelengths longer than about 200 nm.
摘要:
Luminescent materials and the use of such materials in anti-counterfeiting, inventory, photovoltaic, and other applications are described herein. In one embodiment, a luminescent material has the formula: [AaBbXxX′x′X″x″][dopants], wherein A is selected from at least one of elements of Group IA; B is selected from at least one of elements of Group VA, elements of Group IB, elements of Group IIB, elements of Group IIIB, elements of Group IVB, and elements of Group VB; X, X′, and X″ are independently selected from at least one of elements of Group VIIB; the dopants include electron acceptors and electron donors; a is in the range of 1 to 9; b is in the range of 1 to 5; and x, x′, and x″ have a sum in the range of 1 to 9. The luminescent material exhibits photoluminescence having: (a) a quantum efficiency of at least 20 percent; (b) a spectral width no greater than 100 nm at Full Width at Half Maximum; and (c) a peak emission wavelength in the near infrared range.
摘要翻译:本文描述了发光材料以及这些材料在防伪,库存,光伏和其它应用中的用途。 在一个实施方案中,发光材料具有以下分子式:[A a] a B b B x X x'x' “掺杂剂”,其中A选自组IA的至少一个元素; B选自VA组的元素,IB组元素,IIB族元素,IIIB族元素,IVB族元素和VB族元素中的至少一种; X,X'和X“独立地选自VIIB族元素中的至少一种; 掺杂剂包括电子受体和电子给体; a在1到9的范围内; b在1〜5的范围内; 并且x,x'和x“具有在1至9范围内的和。发光材料表现出光致发光,其具有:(a)至少20%的量子效率; (b)半宽度全宽下的光谱宽度不大于100nm; 和(c)近红外范围的峰值发射波长。
摘要:
Provided are systems, compositions and methods that useful in any setting where generating and tracking light is used. The systems, methods and compositions contain as a component flexible, transparent membrane-based materials that include light emitting diodes (LEDs). The LEDs can include or be formed from colloidal quantum dots (CQDs) as an active layer. The CQDs can be formed from solution-processed semiconductor nanocrystals. They have a tunable band gap energy that can be readily tuned by adjusting the size of the nanocrystals. Transparent membrane-based LED arrays exhibit emission wavelength that can be tuned anywhere in the range of 800-2000 nm. The LEDs are highly transparent in the visible wavelength range with the exception of the CQD active layer. The CQD-based LEDs are components of any device or system wherein generating and/or tracking reflected light is utilized, such as in tracing the location and movement of a living individual, or an inanimate object. Also provided are garments used in movement tracking, and imaging devices, which include cameras and microscopes, and systems for volume capture, body motion tracking, eye tracking systems and devices, motion capture systems, simulcam technologies, computer generated characters, holograms, eye wear, such as glasses, goggles, and virtual reality headsets, and medical devices that involve imaging, such as devices that involve imaging of the eye for diagnosing and/or treating eye disorders.
摘要:
A device for generating ultraviolet radiation by an excimer discharge includes at least partly UV-transparent discharge vessel whose discharge space is filled with a gas filling. The device further includes electrodes for triggering and maintaining an excimer discharge in the discharge space, and a luminescent material that contains a phosphor comprising a host lattice of general formula (Y1-x-y-z,Lux,Scy,Az)PO4 wherein 0≦x
摘要翻译:用于通过准分子放电产生紫外线辐射的装置包括至少部分UV透明的放电容器,其放电空间填充有气体填充物。 该装置还包括用于触发和保持放电空间中的准分子放电的电极和含有包含通式(Y1-xyz,Lux,Scy,Az)PO4的主晶格的磷光体的发光材料,其中0&nlE; x <1 和0
摘要:
Luminescent materials and the use of such materials in anti-counterfeiting, inventory, photovoltaic, and other applications are described herein. In one embodiment, a luminescent material has the formula: [AaBbXxX′x′X″x″][dopants], wherein A is selected from at least one of elements of Group IA; B is selected from at least one of elements of Group VA, elements of Group IB, elements of Group IIB, elements of Group IIIB, elements of Group IVB, and elements of Group VB; X, X′, and X″ are independently selected from at least one of elements of Group VIIB; the dopants include electron acceptors and electron donors; a is in the range of 1 to 9; b is in the range of 1 to 5; and x, x′, and x″ have a sum in the range of 1 to 9. The luminescent material exhibits photoluminescence having: (a) a quantum efficiency of at least 20 percent; (b) a spectral width no greater than 100 nm at Full Width at Half Maximum; and (c) a peak emission wavelength in the near infrared range.
摘要:
A device for generating ultraviolet radiation by means of an excimer discharge, which device is equipped with an at least partly UV-transparent discharge vessel whose discharge space is filled with a gas filling, with means for triggering and maintaining an excimer discharge in the discharge space, and with a luminescent material that contains a phosphor comprising a host lattice of general formula (Y1-x-y-z,Lux,Scy,Az)PO4 wherein 0≦x 80%) and a strong absorption of 170 to 190 nm radiation. These phosphors emit UV-C radiation comprising a broadened band in the wavelength range between 225 and 275 nm.
摘要翻译:一种用于通过准分子放电产生紫外线辐射的装置,该装置装备有至少部分UV透明的放电容器,其放电空间填充有气体填充物,具有用于在放电空间中触发和保持准分子放电的装置 ,以及含有荧光体的发光材料,该荧光体包含通式(Ⅺ-Y1-xyz Lu Lu Lu Lu Lu Lu Sc Sc,,,,A A A A A A A 其中0 <= x <1且0 80%)和170至190nm辐射的强吸收。 这些磷光体发射包括在225和275nm之间的波长范围内的宽带的UV-C辐射。
摘要:
A method and apparatus of producing inorganic semiconducting nanoparticles having a stable surface includes providing an inorganic bulk semiconductor material milled in the presence of a selected reducing agent. The reducing agent acts to chemically reduce oxides of the semiconductor material, or prevent the formation of such oxides to provide semiconducting nanoparticles having a stable surface, allowing electrical contact between the nanoparticles. The milling media and/or one or more components of the mill include the selected reducing agent. The milling media or mill are typically composed of a metal selected from the group comprising iron, chromium, cobalt, nickel, tin, titanium, tungsten, vanadium, and aluminum, or an alloy containing one or more of these metals. Alternatively, the selected reducing agent includes a liquid contained in the mill during milling, which is typically an acidic solution containing any of hydrochloric, sulphuric, nitric, acetic, formic, or carbonic acid, or a mixture thereof.
摘要:
A method is provided of producing inorganic semiconducting nanoparticles having a stable surface. The method comprises providing an inorganic bulk semiconductor material, such as silicon or germanium, and milling the bulk semiconductor material in the presence of a selected reducing agent. The reducing agent acts to chemically reduce oxides of one or more component elements of the semiconductor material, or prevent the formation of such oxides by being preferentially oxidised, thereby to provide semiconducting nanoparticles having a stable surface which allows electrical contact between the nanoparticles. The milling may take place in a mill in which the milling media and/or one or more components of the mill comprise the selected reducing agent. For example, the milling can be carried out in a high energy mill with a hammer action in which a pestle of the mill, a mortar of the mill, or both are composed of the selected reducing agent, or a low energy, stirred media mill, such as a ball mill, a rod mill or similar, in which the milling media, a lining of the mill, or both are composed of the reducing agent. The milling media or mill are typically composed of a metal selected from the group comprising iron, chromium, cobalt, nickel, tin, titanium, tungsten, vanadium, and aluminium, or an alloy containing one or more of said metals. In another embodiment of the method, the selected reducing agent comprises a liquid contained in the mill during milling of the bulk semiconductor material. The liquid is typically an acidic solution containing any of hydrochloric, sulphuric, nitric, acetic, formic, or carbonic acid, or a mixture thereof. The invention extends to a mill for carrying out the method.
摘要:
Luminescent materials and the use of such materials in anti-counterfeiting, inventory, photovoltaic, and other applications are described herein. In one embodiment, a method of forming a luminescent material includes: (1) providing a source of A and X, wherein A is selected from at least one of elements of Group IA, and X is selected from at least one of elements of Group VIIB; (2) providing a source of B, wherein B is selected from at least one of elements of Group IVB; (3) subjecting the source of A and X and the source of B to vacuum deposition to form a set of films adjacent to a substrate; and (4) heating the set of films to a temperature in the range of 120° C. to 350° C. to form a luminescent material adjacent to the substrate, wherein the luminescent material includes A, B, and X.