Abstract:
The present invention provides a biped (two-footed) walking mobile system, its walk controller, and walk control method therefore, which are to realize enhancing an walk stability, as well as a consumed energy saving. A walk controller (30) of a biped walking mobile system forms a gait data by a gait forming part (33) based on parameters from a gait stabilizing part (32), and drive-controls drive means of respective joint portions (15L, 15R–20L, 20R) of each leg portion based on said gait data. In this case, the walk controller (30) is so constituted as to selectively witch a powered mode to conduct ordinary drive-control and a passive mode to drive-control the drive means similarly with passive joints, whereby drive-controlling respective joint portions. The walk controller (30) preferably switches the drive and passive modes with respect to, for example, joint portions of knee and foot portions, or switches to the powered mode for kick-up and landing during walking motion, and to the passive mode for a free foot state.
Abstract:
A biped walking humanoid robot is disclosed having an arrangement whereby shocks acting on various parts of the robot when it falls can be relieved and its state of fall can then be detected. The robot has a body (11) capable of bending forward, a pair of legs (12L, 12R) attached to a lower part of the body at a pair of opposite sides thereof, respectively, a pair of arms (13L, 13R) attached to an upper part of the body at a pair of opposite sides, respectively, and a head (14) attached to an upper end of the body, each of the legs having a upper leg (15L, 15R) attached to the body so as to be pivotally movable relative thereto triaxially, a lower leg (16L, 16R) attached to a lower end of the upper leg so as to be pivotally movable relative thereto monoaxially and a foot (17L, 17R) attached to a lower end of the lower leg so as to be pivotally movable relative thereto biaxially, each of the arms having an upper arm (25L, 25R) attached to the body so as to be pivotally movable relative thereto biaxially, a lower arm (26L, 26R) attached to the upper arm so as to be pivotally movable relative thereto monoaxially and a hand (27L, 27R) attached to the lower hand so as to be pivotally movable relative thereto biaxially, the robot also having drive means (23L, 23R, 24L, 24R; 21L, 21R; 19L, 19R, 20L, 20R, 18L, 18R; . . . ) associated with the feet, the lower legs and the upper legs of the legs, the hands, the lower arms and the upper arms of the arms and a body bending-forward region for pivotally moving them, respectively, a control stage (51) for controlling driving actions of the drive means, and a contact detector (40) mounted at each of an outer elbow surface area formed between the upper and lower arms, and an outer wrist surface area between the lower arm and the hand of each of the arms, and a lower toe surface area of the foot, a lower heal surface area of the foot, an outer knee surface area between the upper and lower legs of each of the legs, and a hip surface area and a back surface area of the body, the contact detector at each of these surface areas comprising a casing portion (41) made of a material forming an outer covering surface area of the robot, a pressure sensor (42) for sensing a pressure acting on the casing portion and a shock absorbing material (43) for absorbing a shock acting on the casing portion. Thus, when the biped walking humanoid robot is having a fall, the state or type of this fall can be determined by the control stage in response to a contact signal detected by the pressure sensor in the contact detector at a relevant part of the abovementioned robot parts which is brought into contact with the floor or ground. Then, on the basis of the type of the fall determined, the control stage is allowed to act on the drive means to move the arm and leg parts suitably so as to cause the robot to take a corrective falling action to have a safety fall and then to move to taking a rising action to get up on its feet.
Abstract:
A walk controller (30) for a biped (two-footed) walking mobile system, which drive-controls each joint drive motor (15L, 15R-20L, 20R) of each leg portion (13L, 13R) of a biped walking mobile system based on gait data, includes a force detector (23L, 23R) to detect the force allied to a sole of each foot portion (14L, 14R), and a compensator (32) to modify the gait data from a gait former (24) based on the force detected by a force detector, and is constituted so that each force detector (23L, 23R) comprises at least three 3-axial force sensors (36a, 36b, 36c) allocated on a sole of each foot portion (14L, 14R), and a compensator (32) modifies gait data based on the detected signals from three 3-axial force sensors (36a, 36b, 36c) which detect effective force, thereby the walk stability of a robot is realized, even on the unstable road surface condition with complex roughness.
Abstract:
According to an illustrative embodiment, an information processing system is provided. The information processing system includes at least one control unit to designate a user-access position within sequential content at which a user accesses the sequential content, and to associate the user with other users who each access the sequential content at a position that is the same, or close to, the user-access position.
Abstract:
Provided is an engine starting device, including: starter control means for causing, when the restart condition is established during a period in which a meshing inhibition condition for a ring gear and a pinion gear is established, the pinion gear and the ring gear to mesh with each other after the meshing inhibition condition is released, thereby restarting the engine. The starter control means determines the meshing permission condition and the meshing inhibition condition based on at least an engine rotation speed, and determines the release of the meshing inhibition condition before the engine completely stops based on at least one of the engine rotation speed and an elapsed time after the establishment of the meshing inhibition condition.
Abstract:
The present invention involves retrieving edges that do not constitute a designated network model which is a network model designated by a user and are linked to nodes that constitute the designated network model, displaying retrieval results that include the retrieved edges and network model IDs corresponding to the edges in a selectable manner, and generating an integrated network model in which, when the retrieval results are selected by the user, the edges that are included in the selected retrieval results and the nodes that do not constitute the designated network model and are linked to the edges, are integrated into the designated network model.
Abstract:
The present invention sets, for each cells or each condition, a production output of the cells or the biomass based on the measured data and a variable indicating an extent of variation of the production output, calculates a variable range of the production output and the variable in case of combining the multiple cells or conditions based on the production output and the variable set, and calculates an optimum combination within the variable range by using an optimization method.
Abstract:
[Object] To provide a gene clustering tool that can perform gene clustering based on the data on gene expression level over time without a priori data forecast but with high precision.[Solving Means] Provided is a gene clustering program for performing at least (1) a step S1 of calculating a feature value reflecting similarity among data from the data representing variation in gene expression level over time, (2) a step S2 of calculating eigenvectors of a similarity matrix M from the calculated feature values for all combinations of the genes, (3) a step S3 of transforming the similarity matrix M into a Boolean matrix N while maintaining eigenvalues of the eigenvectors, and (4) a step S4 of clustering the data based on the Boolean matrix N.
Abstract:
There is provided a power distributing system including a power supply server that outputs power to a bus line at a predetermined timing, a client that receives the power output by the power supply server via the bus line, and a switching distribution system unit that switches a distribution system with respect to the bus line. The switching distribution system unit switches power transmitting/receiving system between the power supply server and the client into power transmitting/receiving system of commercial power, and disconnects the power transmitting/receiving system of commercial power so that the power transmitting/receiving system between the power supply server and the client becomes effective
Abstract:
It is a biped (two-footed) walking humanoid robot, which is provided with drive motors (11d, 11e, 18L, 18R-24L, 24R, 28L, 28R-33L, 33R, 35, 36) to pivotally move respective joint portions, and a motion control apparatus (40) to drive-control respective drive motors, and said motion control apparatus (40), together with a detector (45) to detect the robot's current posture and others, compares the robot's detected current posture and others with next motion command input from outside, and if next motion command is within the range of stability limit with respect to the robot's current posture and others, the complementary data with respect to intermediate motion from current posture till initial posture of next motion command and the motion data corresponding to next motion command are generated, each drive motor is drive-controlled based on said complementary and motion data, and thereby various motions are conducted smoothly and continually. It is preferably provided with a motion library (41a) storing time series data of basic motions as the elements of the robot's motions and posture data consisting of algorithm, reads out the corresponding posture data from said motion library, and generates complementary and motion data as the combined motion sequence.