Abstract:
A magnetic recording medium comprising: a nonmagnetic support; and at least one magnetic layer comprising a ferromagnetic hexagonal ferrite powder and a binder, wherein the magnetic layer comprises diamond particles having an average particle size of 0.03 to 0.5 &mgr;m in a ratio of 0.1 to 5% by weight to the ferromagnetic hexagonal ferrite powder, the ferrite hexagonal ferrite powder has an average tabular diameter of 5 to 40 nm, and the binder is at least one of: (i) a binder comprising from 0.2 to 0.7 meq/g of at least one polar group selected from —SO3M, —OSO3M, —PO(OM)2, —OPO(OM)2 and —COOM, wherein M represents a hydrogen atom, an alkali metal or ammonium, and (ii) a binder comprising from 0.5 to 5 meq/g of at least one polar group selected from —CONR1R2, —NR1R2 and —N+R1R2R3 wherein R1, R2 and R3 each independently represents a hydrogen atom or an alkyl group.
Abstract:
A method for producing a magnetic recording medium comprising: dispersing at least a binder and a ferromagnetic hexagonal ferrite powder to prepare a magnetic coating; and applying the magnetic coating to provide at least one magnetic layer, wherein the binder is at least one of: (a) a binder comprising 0.2 to 0.7 meq/g of at least one polar group selected from —SO3M, —OSO3M, —PO(OM)2, —OPO(OM)2 and —COOM wherein M represents a hydrogen atom, an alkali metal or ammonium; and (b) a binder comprising 0.5 to 5 meq/g of at least one polar group selected from —CONR1R2, —NR1R2 and —N+R1R2R3 wherein R1, R2 and R3 each independently represents a hydrogen atom or an alkyl group, and the ferromagnetic hexagonal ferrite powder has an average tabular diameter of from 10 to 40 nm and a water content of from 0.3 to 3% by weight.
Abstract:
In subjecting a substrate of low electric conductivity to a pretreatment by holding the same within a fluidized bed of diamond particles for the formation of a diamond film on the substrate surface, a treatment method is disclosed which is capable of preventing decrease in the effect of the pretreatment. The pretreatment of the substrate is conducted within a fluidized bed of diamond particles by keeping the electrostatic potential of the substrate in the range from −1.5 to +1.5 kV. It is desirable that the relative humidity of the gas for the fluidization of diamond particles is controlled to be 40% or higher. It is more desirable that ion bombardment onto the substrate surface to effect neutralization of the electrostatic charges. The fluidizing gas is humidified preferably by using a bubbling apparatus or spraying apparatus.
Abstract:
A magnetic recording medium is disclosed comprising a non-magnetic support having provided thereon a plurality of magnetic layers containing a ferromagnetic powder dispersed in a binder, wherein the lower magnetic layer closest to the support contains as the binder at least one polyurethane resin having a glass transition temperature (Tg) of from -50.degree. C. to -10.degree. C., and the uppermost magnetic layer contains as the binder at least one polyurethane resin having a glass transition temperature of from more than 40.degree. C. to 100 .degree. C.The magnetic recording medium of the present invention exhibits excellent running durability as well as electromagnetic conversion characteristics.
Abstract:
A method is proposed for the preparation of a resin membrane suitable for use, for example, as a covering pellicle of a photolithographic mask for patterning of semiconductor devices in the electronic industry. The method comprises the steps of: (a) coating a continuous-length substrate with a solution of the resin by using a roller coater to form a coating layer of the resin solution; (b) drying the coating layer by evaporating the solvent to form a dry resin film on the substrate surface; and (c) peeling the resin film from the surface of the substrate, preferably, in water.
Abstract:
Proposed is a high-precision X-ray lithographic mask blank with reinforcement free from warping or distortion. The mask blank is an integral body comprising: (a) a frame made from a silicon wafer; (b) a membrane of an X-ray permeable material such as silicon carbide adhering to and supported by one surface of the frame; and (c) a reinforcing member made from a single crystal of silicon adhesively bonded to the other surface of the frame with (d) a layer of silicon oxide intervening between the frame and the reinforcing member. The mask blank can be prepared in a process of first forming a layer of silicon oxide on the surface of the silicon wafer and/or reinforcing member prior to deposition of the X-ray permeable film on the silicon wafer and heating them together at a temperature of 800.degree. C. or lower while they are in direct contact with each other with the silicon oxide layer intervening therebetween.
Abstract:
In a process for the deposition of a film of an inorganic substance such as silicon carbide on the surface of a substrate such as a silicon wafer by the method of sputtering, as in the process for the preparation of a membrane to serve as an X-ray lithographic mask, using a target disc and a substrate disc held in parallel to each other, uniformity in the internal stress of the deposited film can be improved by displacing the target or the substrate relative to each other during the sputtering procedure in the direction parallel to the surface of the target or substrate in a distance of at least 1 mm.
Abstract:
A method and means for measuring the electric properties of capacitor, inductor and resistor elements is described. The element to be measured and a reference element are connected in series, and standard A.C. voltage is applied to one end of the series circuit whereas a variable voltage is applied to the other end of said circuit. The variable voltage is controlled in order to zero the voltage or the current at the common junction of both the element to be measured and the reference element. Said standard voltage and said variable voltage are rectified, and the generated D.C. signals are used for charging integrator capacitors. These capacitors are then discharged and the ratio of charging and discharging time is a measure of the resistance, capacitance and inductance, respectively, of the unknown element. Dielectric and magnetic dissipation factors may be measured in a similar manner.
Abstract:
The magnetic signal reproduction system comprises a magnetic recording medium comprising a magnetic layer comprising a ferromagnetic powder and a binder on a nonmagnetic support; and a reproduction head, wherein a number of protrusions equal to or greater than 10 nm in height on the magnetic layer surface, as measured by an atomic force microscope, ranges from 50 to 2500/10,000 μm2, a quantity of lubricant on the magnetic layer surface, denoted as a surface lubricant index, ranges from 0.5 to 5.0, a surface abrasive occupancy of the magnetic layer ranges from 2 to 20 percent, and the reproduction head is a magnetoresistive magnetic head comprising a spin-valve layer.
Abstract:
The present invention is a base material for forming a single crystal diamond comprising, at least, a seed base material of a single crystal and a thin film heteroepitaxially grown on the seed base material, wherein the seed base material is a single crystal diamond and the thin film is Iridium film or Rhodium film. As a result, there is provided a base material for forming a single crystal diamond that enables a single crystal diamond having a high crystallinity to be heteroepitaxially grown thereon and that can be reused repeatedly and a method for producing a single crystal diamond that enables a single crystal diamond having a high crystallinity and a large area to be produced at low cost.