Abstract:
A method and a system for adjustable coating on a substrate using a magnetron sputtering apparatus are provided. The method comprises the steps of providing a magnetron assembly which comprises a plurality of magnets attached to a plurality of yokes and a plurality of actuating mechanisms (208), each operatively coupled to at least one of the plurality of yokes. The method further comprises automatically determining individual positions of each of the plurality of yokes of the magnetron assembly on the basis of at least one parameter, and adjusting individually positions of each of the plurality of yokes of the magnetron assembly in accordance with the automatically determined individual positions.
Abstract:
A sputtering apparatus includes a back plate supporting a sputtering target, a magnet module disposed under the back plate and including a magnet unit reciprocating in a first direction, a first shielding member attached on a portion of the magnet unit, moving together with the magnet unit, and covering at least a portion of the magnet unit, a protective sheet disposed between the back plate and the magnet module, and a second shielding member disposed between the back plate and the magnet module, and having a fixed position.
Abstract:
The present disclosure discloses a sputter coating device and method for a solar cell. The sputter coating device includes a target for sputtering to a substrate, a blocking unit between the target and the substrate, and the orthographic projection of the blocking unit on the substrate partially coincides with the orthographic projection of the target on the substrate.
Abstract:
Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
Abstract:
The invention provides a sputter deposition assembly that includes a sputtering chamber, a sputtering target, and a magnet assembly. The magnet assembly includes a two-part magnetic backing plate that includes first and second plate segments, of which at least one is laterally adjustable. Also provided are methods of operating the sputter deposition assembly.
Abstract:
A sputtering apparatus includes a chamber for containing a feed gas. An anode is positioned inside the chamber. A cathode assembly comprising target material is positioned adjacent to an anode inside the chamber. A magnet is positioned adjacent to cathode assembly. A platen that supports a substrate is positioned adjacent to the cathode assembly. An output of the power supply is electrically connected to the cathode assembly. The power supply generates a plurality of voltage pulse trains comprising at least a first and a second voltage pulse train. The first voltage pulse train generates a first discharge from the feed gas that causes sputtering of a first layer of target material having properties that are determined by at least one of a peak amplitude, a rise time, and a duration of pulses in the first voltage pulse train. The second voltage pulse train generates a second discharge from the feed gas that causes sputtering of a second layer of target material having properties that are determined by at least one of a peak amplitude, a rise time, and a duration of pulses in the second voltage pulse train.
Abstract:
A gas blocking layer forming apparatus comprises a vacuum chamber that provides a space where a chemical vapor deposition process and a sputtering process are performed; a holding unit that is provided at a lower side within the vacuum chamber and mounts thereon a target object on which an organic/inorganic mixed multilayer gas blocking layer is formed; a neutral particle generation unit that is provided at an upper side within the vacuum chamber and generates a neutral particle beam having a high-density flux with a current density of about 10 A/m2 or more; and common sputtering devices that are provided at both sides of the neutral particle generation unit, wherein each common sputtering device has a sputtering target of which a surface is inclined toward a surface of the target object.
Abstract:
Provided is a magnetron source, which comprises a target material, a magnetron located thereabove and a scanning mechanism connected to the magnetron for controlling the movement of the magnetron above the target material. The scanning mechanism comprises a peach-shaped track, with the magnetron movably disposed thereon; a first driving shaft, with the bottom end thereof connected with the origin of the polar coordinates of the peach-shaped track, for driving the peach-shaped track to rotate about the axis of the first driving shaft; a first driver connected to the first driving shaft for driving the first driving shaft to rotate; and a second driver for driving the magnetron to move along the peach-shaped track via a transmission assembly. A magnetron sputtering device including the magnetron and a method for magnetron sputtering using the magnetron sputtering device are also provided.
Abstract:
Technologies are presented for growing graphene by chemical vapor deposition (CVD) on a high purity copper surface. The surface may be prepared by deposition of a high purity copper layer on a lower purity copper substrate using deposition processes such as sputtering, evaporation, electroplating, or CVD. The deposition of the high purity copper layer may be followed by a thermal treatment to facilitate grain growth. Use of the high purity copper layer in combination with the lower purity copper substrate may provide thermal expansion matching, compatibility with copper etch removal, or reduction of contamination, producing fewer graphene defects compared to direct deposition on a lower purity substrate at substantially less expense than deposition approaches using a high purity copper foil substrate.
Abstract:
Technologies are presented for growing graphene by chemical vapor deposition (CVD) on a high purity copper surface. The surface may be prepared by deposition of a high purity copper layer on a lower purity copper substrate using deposition processes such as sputtering, evaporation, electroplating, or CVD. The deposition of the high purity copper layer may be followed by a thermal treatment to facilitate grain growth. Use of the high purity copper layer in combination with the lower purity copper substrate may provide thermal expansion matching, compatibility with copper etch removal, or reduction of contamination, producing fewer graphene defects compared to direct deposition on a lower purity substrate at substantially less expense than deposition approaches using a high purity copper foil substrate.