摘要:
The present invention relates to a solid-state laser system constituted bya solid-state laser whichis optically pumped by a vertical extended cavity surface emitting laser (VECSEL). The solid-state laser comprises a solid-state laser medium (11) arranged in a laser cavity which consists oftwo resonator cavitymirrors (10, 12), a first of saidcavity mirrors (12) being designed as an outcoupling mirror of saidsolid-state 5 laser and a second of saidcavity mirrors (10) being formed to allow optical pumping of saidsolid-state laser medium (11) through saidsecond cavity mirror (10). In the proposed solid-state laser system, the extended cavity mirror (7) of the VECSEL is constituted byone of the resonator cavity mirrors (10, 12) of the solid-state-laser. The proposed laser system provides an improved conversion efficiency and a highly 10 integrated design.
摘要:
A method 200 of manufacturing a (part of) color ring is provided. The color ring converts a color of light emitted by a light emitter into at least one other color. The method (200) comprising the steps of: i) pressing (102) a first ring body of a first granulated precursor comprising a first luminescent material for converting the color of the light of the light emitter into a first one of the at least one other color, and ii) sintering (104) the first ring body for obtaining a first ceramic ring. The color ring comprises at least a segment of the first ceramic ring. Further, the method may comprises the steps of: iii) pressing (208) a second ring body of a second granulated precursor, wherein the first luminescent material is absent, iv) sintering (210) the second ring body for obtaining a second ceramic ring, v) segmenting (206) the first ceramic rings in at least two parts and segmenting (212) the second ceramic ring in at least two parts, and vi) forming (214) at least a part of the color ring by coupling a part of the first ceramic ring and a part of the second ceramic ring.
摘要:
A method 200 of manufacturing a (part of) color ring is provided. The color ring converts a color of light emitted by a light emitter into at least one other color. The method (200) comprising the steps of: i) pressing (102) a first ring body of a first granulated precursor comprising a first luminescent material for converting the color of the light of the light emitter into a first one of the at least one other color, and ii) sintering (104) the first ring body for obtaining a first ceramic ring. The color ring comprises at least a segment of the first ceramic ring. Further, the method may comprises the steps of: iii) pressing (208) a second ring body of a second granulated precursor, wherein the first luminescent material is absent, iv) sintering (210) the second ring body for obtaining a second ceramic ring, v) segmenting (206) the first ceramic rings in at least two parts and segmenting (212) the second ceramic ring in at least two parts, and vi) forming (214) at least a part of the color ring by coupling a part of the first ceramic ring and a part of the second ceramic ring.
摘要:
The present invention relates to an extended cavity semiconductor laser device comprising an array of at least two semiconductor gain elements (20, 21), each of said semiconductor gain elements (20, 21) comprising a layer structure (1) forming a first end mirror (2) and an active medium (3). A coupling component (22) inside of the device combines fundamental laser radiation emitted by said array of semiconductor gain elements (20, 21) to a single combined laser beam (25). A second end mirror (23) reflects at least part of said single combined laser beam (23) back to said coupling component (22) to form extended cavities with the first end mirrors (2). Due to this coherent coupling of several extended cavity semiconductor lasers a single beam of the fundamental radiation is generated with increased intensity, good beam profile and narrow spectral band width. This beam of increased intensity is much better suited for frequency conversion via upconversion or via second harmonic generation than the individual beams of the array of extended cavity semiconductor laser components. The efficiency of frequency conversion is therefore greatly enhanced.
摘要:
The invention relates to a solid-state laser device (1) comprising a gain medium (10) essentially having a main phase of a solid state host material (15) which is doped with rare-earth ions. According to the invention at least a portion of the rare-earth ions are Ce3+-ions (19) with at least one 4f-state (16, 17) and at least one 5d-band (18) energetically between the highest valence state and the lowest conduction state of the host material (15), wherein the highest 4f-state (17) and the bottom edge of the 5d-band (18) have a first energy-level distance (Δ1) and the lowest 4f-state (16) and the upper edge of the 5d-band (18) have a second energy-level distance (Δ2), wherein the host material (15) is selected such that the resulting gain medium (10) has an energy range (20) devoid of unoccupied states for disabling excited state absorption, the energy range (20) is located between a lower energy (21) which is by the value of the first energy level distance (Δ1) above the bottom edge of the 5d-band (18) and a higher energy (22) which is by the value of the second energy level distance (Δ2) above the upper edge of the 5d-band (18). The invention further relates to a corresponding lighting system comprising at least one solid-state laser device (1).
摘要:
The present invention relates to a solid state laser device with a solid state gain medium between two resonator end mirrors (3, 5) and a GaN-based pump laser (1) arranged to optically pump the solid state gain medium. The solid state gain medium is a Pr3+-doped crystalline or polycrystalline host material (4) which has a cubic crystalline structure and highest phonon energies of ≦600 cm−1 and provides a band gap of ≧5.5 eV. The proposed solid state laser can be designed to emit at several visible wavelengths with the emitted power showing a reduced dependence on the temperature of the GaN-based pump laser (1).
摘要:
It is an object of the invention to provide a simple setup of a waveguide laser which allows to control the emission of specific laser wavelengths in a laser material having laser transitions of similar wavelengths. For this purpose a core (4) forming a gain medium is provided with a cladding (6) which introduces losses to an undesired laser transition but is transparent to the light of a desired laser transition. A second cladding (8) is provided for guiding the laser radiation. Pr: ZBLAN with a Tb: doped cladding may be used. Instead of the absorbing cladding (6) a photonic crystal (20) may be used. The laser is end-pumped by a laser diode (14).
摘要:
The invention relates to a laser (1) for emitting laser light in the visible spectral range. A rare earth doped anisotropic crystal (2) comprising a 5d-4f transition is arranged within a laser resonator (7, 8), and a pumping light source (3) pumps the crystal (2) for generating laser light in the visible spectral range by using the 5d-4f transition. The 5d-4f transition of the rare earth doped anisotropic crystal comprises an absorption band extending over several nm. Thus, pump light having a wavelength within a relatively broad wavelength range can be used. This reduces the requirements with respect to the wavelength accuracy of the pumping light source and, thus, more pumping light sources of an amount of produced pumping light sources can be used for assembling the laser, thereby reducing the amount of rejects.
摘要:
The invention relates to a method of making Ce3+ containing laser materials with a fast cooling rate. This has been shown to dramatically increase the absorption rate of the 4f-5d-transition of Ce3+ within the laser material
摘要:
A method and a circuit arrangement for the operation of a discharge lamp, in particular of a high-pressure gas mercury discharge lamp (HID[high intensity discharge]) lamp or a UHP [ultra high performance] lamp, are described, which are used to improve the color rendering index of the light. This is essentially achieved by feeding the lamp current on which current pulses with a suitably adjusted amplitude Ip and/or duration ?p and/or repetition rate f are superimposed.