Abstract:
An array antenna is provided. The array antenna includes at least one pair of interleaved TR antenna arrays in a continuous arraying direction, where the TX arrays and RX arrays of two adjacent TR antenna arrays are interleaved. This can effectively rectify discontinuousness of TX arrays and RX arrays in a discontinuous arraying direction in the prior art, and thereby reduce grating lobes or side lobes caused by discontinuous TX arrays and discontinuous RX arrays in an array antenna, so that performance of the array antenna improves.
Abstract:
The present application discloses a signal processing apparatus and method, the method includes: receive an analog signal; adjust a frequency band of the analog signal to a lowest frequency band when a frequency band of the analog signal received by the receiving unit falls outside the lowest frequency band in multiple preconfigured frequency bands; process, by using a signal processing channel in the lowest frequency band, the analog signal whose frequency band has been adjusted to the lowest frequency band. The method provided in the embodiments of the present application processes signals of different frequency bands by using a processing channel in a lowest frequency band. In this way, only a relatively small quantity of radio-frequency link components are required to implement processing of the signals of the different frequency bands, which reduces a link size of a communications system.
Abstract:
A transceiver includes: a baseband control apparatus (21); an up-conversion apparatus (22), connected to the baseband control apparatus (21), and configured to perform up-conversion on a baseband signal generated by the baseband control apparatus (21), to obtain an intermediate frequency signal; at least two radio frequency channels (23) disposed in parallel, connected to the up-conversion apparatus (22), and configured to perform frequency conversion, amplification, and filtering on the intermediate frequency signal, to obtain a radio frequency signal corresponding to the frequency band covered by the each radio frequency channel; and an antenna (24), connected in series with an output end of any radio frequency channel of the at least two radio frequency channels (23), and configured to transmit the radio frequency signal obtained by the radio frequency channel. The transceiver enables relatively high wireless communication performance when an ultra wide bandwidth is implemented.
Abstract:
The present invention discloses a power control method, a power control system and a related device. The method includes: monitoring a downlink data sending condition of a dedicated physical data channel (DPDCH), and if no downlink data is sent on the DPDCH, determining to decrease downlink transmit power of a DPCH, or if downlink data is sent on the DPDCH, determining to increase or maintain downlink transmit power of a DPCH. The present invention can reduce the downlink transmit power of the DPCH and promote experience of other users on a precondition of ensuring system performance.
Abstract:
Embodiments of the present invention disclose a frequency mixing circuit and a method for suppressing local oscillation leakage in the frequency mixing circuit, where a mixed input signal and a local oscillation signal are involved, and local oscillation leakage can be effectively reduced by using a frequency mixing circuit whose structure is simpler and is easier to be implemented. The frequency mixing circuit includes a direct current bias circuit, where the direct current bias circuit includes a direct current bias voltage source used for reducing a local oscillation current. The frequency mixing circuit is mainly applied to frequency mixing, and especially to a case where an intermediate frequency signal is mixed with a local oscillation signal to output a radio frequency signal.
Abstract:
An apparatus for implementing digital baseband predistortion includes a transmission channel including a digital-to-analog converter, a modulator, an amplifier and a power amplifier, and further includes a feedback channel analog part including a diode detector, a filter and an analog-to-digital converter, and a feedback channel digital part including a predistorter, a mode obtaining unit, a predistortion coefficient generator and a feedback correcting unit. The diode detector is configured to obtain an envelope of an output signal of the power amplifier. Embodiments of the present invention further provide a method for implementing digital baseband predistortion by applying the foregoing single-chip. Due to a simple structure of the diode detector, not only the number of radio frequency devices on the feedback channel is reduced, implementation complexity of hardware is lowered, power consumption is reduced, but also a feedback channel analog part may be integrated onto the single-chip.
Abstract:
An antenna includes a first and second radiation units coupled with each other. The first radiation unit includes a first switch circuit connected to a feed network. When the first switch circuit is on, a current direction of the first radiation unit is a first direction; or when the first switch circuit is off, a current direction of the first radiation unit is a second direction. The second radiation unit includes a second switch circuit. When the second switch circuit is on, a resonance frequency of the second radiation unit is a first frequency, and a beam direction of the second radiation unit is a third direction; or when the second switch circuit is off, a resonance frequency of the second radiation unit is a second frequency, and a beam direction of the second radiation unit is a fourth direction.
Abstract:
Embodiments of this application provide a data compression method, a data decompression method, and a communication apparatus. The communication apparatus may be a baseband unit (BBU), a remote radio unit (RRU), or the like. The method may be used for data compression and decompression. During data compression, the communication apparatus may obtain first data based on N pieces of original data, an amount K of combined data, and a data bit width L of the combined data, where the first data is data obtained by compressing the original data, a data bit width corresponding to the first data is β, β is a non-integer greater than 0, and N, K, and L are positive integers; then determine the combined data based on β and the first data; and output the combined data.
Abstract:
A transceiver includes: a baseband control apparatus (21); an up-conversion apparatus (22), connected to the baseband control apparatus (21), and configured to perform up-conversion on a baseband signal generated by the baseband control apparatus (21), to obtain an intermediate frequency signal; at least two radio frequency channels (23) disposed in parallel, connected to the up-conversion apparatus (22), and configured to perform frequency conversion, amplification, and filtering on the intermediate frequency signal, to obtain a radio frequency signal corresponding to the frequency band covered by the each radio frequency channel; and an antenna (24), connected in series with an output end of any radio frequency channel of the at least two radio frequency channels (23), and configured to transmit the radio frequency signal obtained by the radio frequency channel. The transceiver enables relatively high wireless communication performance when an ultra wide bandwidth is implemented.
Abstract:
The present invention relates to the communications field, and provides a phased array calibration method and a phased array calibration circuit. The phased array calibration circuit includes a signal obtaining module, a selector, a phase difference module, and a main signal module. The selector is configured to switch on the signal obtaining module and the main signal module; the signal obtaining module is configured to obtain a first signal according to an initial signal after the selector switches on the signal obtaining module and the main signal module; the selector is further configured to switch on the phase difference module, the signal obtaining module, and the main signal module; and the signal obtaining module is further configured to obtain a second signal according to the initial signal after the selector switches on the phase difference module, the signal obtaining module, and the main signal obtaining module.