Abstract:
Embodiments of the present invention disclose a human-computer interaction method of a user terminal, an apparatus, and a user terminal. The method includes: collecting entered fingerprint information; if target fingerprint information that matches the fingerprint information exists in stored preset fingerprint information, determining an application bound to the target fingerprint information; and displaying at least one application option included in the application. In the embodiments of the present invention, application option search efficiency can be improved.
Abstract:
An apparatus including a processor configured to receive a digital communication signal, wherein the digital communication signal includes a common reference signal and transmitted data. The processor determines a first interfering channel matrix for a first interfering cell based on a channel estimation of the common reference signal, and estimates a first power offset ratio and a first effective pre-coding matrix for the first interfering cell by evaluating a maximum likelihood metric, wherein the maximum likelihood metric is based on a first interfering channel correlation. The processor then reconstructs a channel covariance matrix based on the estimated first power offset ratio and the first effective pre-coding matrix and detects the transmitted data based on the reconstructed channel covariance matrix.
Abstract:
A receiving device including a receiver configured to receive a communication signal (CS) in a current time frame, and a processor configured to determine a set of candidate Control Channels (CCHs), determine a decoding order for the candidate CCHs in the set, decode at least one candidate CCH in the set according to the decoding order, compute a possible Radio Network Temporary Identifier (RNTI) for the decoded candidate CCH, compute a metric value (MV) for the decoded candidate CCH, the MV provides an indication when the decoded candidate CCH might be an actual CCH, determine when the decoded candidate CCH is an actual CCH based on the computed possible RNTI and the MV, derive control information (CI) from the decoded candidate CCH when the decoded candidate CCH is determined as an actual CCH, and cancel or suppress interference in the CS based on the derived CI.
Abstract:
Embodiments of the present invention disclose a method and an apparatus for transmitting a CPRI signal by means of a coaxial line. The method includes: converting a Common Public Radio Interface CPRI signal sent by a sending end into a parallel data stream; extracting valid data from the data stream by performing frame parsing; and converting the valid data into a transmittable analog signal, modulating the analog signal to a specified frequency, and sending it to a receiving end by means of a coaxial line. The present invention applies to transmission of a CPRI signal by means of a coaxial line.
Abstract:
Embodiments of the present invention disclose a human-computer interaction method of a user terminal, an apparatus, and a user terminal. The method includes: collecting entered fingerprint information; if target fingerprint information that matches the fingerprint information exists in stored preset fingerprint information, determining an application bound to the target fingerprint information; and displaying at least one application option included in the application. In the embodiments of the present invention, application option search efficiency can be improved.
Abstract:
A fingerprint information is collected when a touch screen of a terminal device remains black. Fingerprint recognition is performed. In response to success of the fingerprint recognition, lighting up the touch screen and displaying a first interface. An icon of a first application and a first plurality of application options of the first application are displayed together on the first interface. The first plurality of application options of the first application are displayed in an area within a range of the icon.
Abstract:
An operation method with fingerprint recognition, an apparatus, and a mobile terminal relate to the field of communications technologies, where the method includes obtaining a fingerprint event that is entered by a user, presenting at least one shortcut when the fingerprint event that is entered by the user matches a preset fingerprint event, obtaining an operation vector, where the operation vector is generated by operating at least one operation component of the mobile terminal by the user, running a first shortcut in the at least one shortcut according to the operation vector, and presenting a running result. Thereby reducing operation duration, and improving operation efficiency.
Abstract:
A signal determination unit for determining one or more reduction signals for transmission on one or more reduction subcarriers of an OFDM signal, wherein the signal determination unit comprises an amplitude determination unit configured to determine a real part and an imaginary part of a target reduction amplitude of the one or more reduction signals.
Abstract:
An apparatus including a processor configured to receive a digital communication signal, wherein the digital communication signal includes a common reference signal and transmitted data. The processor determines a first interfering channel matrix for a first interfering cell based on a channel estimation of the common reference signal, and estimates a first power offset ratio and a first effective pre-coding matrix for the first interfering cell by evaluating a maximum likelihood metric, wherein the maximum likelihood metric is based on a first interfering channel correlation. The processor then reconstructs a channel covariance matrix based on the estimated first power offset ratio and the first effective pre-coding matrix and detects the transmitted data based on the reconstructed channel covariance matrix.
Abstract:
The present disclosure relates to an iterative method for estimating covariance matrices of communication signals comprising a) computing a reference symbol covariance matrix estimate (k,l); b) inputting said reference symbol covariance matrix estimate (k,l) to a detector or a decoder in a first iteration, and thereafter inputting the covariance matrix estimate output from e) to the detector or the decoder in subsequent iterations to obtain an updated demodulated or decoded communication signal for each iteration; c) inputting the demodulated or decoded communication signal to a symbol generator; d) computing an updated data covariance matrix estimate (k,l) for each iteration based on data symbols of said regenerated communication signal; e) combining said reference symbol covariance matrix estimate (k,l) and said updated data covariance matrix estimate (k,l); and f) forwarding said covariance matrix estimate output to the detector or decoder in b) to obtain the updated demodulated or decoded communication signal for each iteration.