摘要:
A logic device includes: a substrate having a channel layer; two input terminal patterns of ferromagnetic material formed on the substrate and spaced apart from each other along a longitudinal direction of the channel layer so as to serve as the input terminals of a logic gate; and an output terminal pattern of ferromagnetic material formed on the substrate and disposed between the two input terminal patterns to serve as an output terminal of the logic gate. The output terminal pattern reads an output voltage by using spin accumulation and diffusion of electron spins which are injected into the channel layer from the input terminal patterns.
摘要:
A spin transistor that includes: a semiconductor substrate including an upper cladding layer and a lower cladding layer, and a channel layer interposed between the upper and lower cladding layers; a ferromagnetic source and a ferromagnetic drain formed on the semiconductor substrate and spaced from each other in a length direction of the channel layer; and a gate electrode formed on the semiconductor substrate between the source and the drain and having applied a gate voltage thereto to control a spin precession of an electron passing through the channel layer, wherein the semiconductor substrate includes a first carrier supply layer of a first conductivity type disposed below the lower cladding layer and supplying carriers to the channel layer, and a second carrier supply layer of a second conductivity type opposite to the first conductivity type formed on the upper cladding layer and supplying the carriers to the channel layer.
摘要:
A spin transistor that includes: a semiconductor substrate including an upper cladding layer and a lower cladding layer, and a channel layer interposed between the upper and lower cladding layers; a ferromagnetic source and a ferromagnetic drain formed on the semiconductor substrate and spaced from each other in a length direction of the channel layer; and a gate electrode formed on the semiconductor substrate between the source and the drain and having applied a gate voltage thereto to control a spin precession of an electron passing through the channel layer, wherein the semiconductor substrate includes a first carrier supply layer of a first conductivity type disposed below the lower cladding layer and supplying carriers to the channel layer, and a second carrier supply layer of a second conductivity type opposite to the first conductivity type formed on the upper cladding layer and supplying the carriers to the channel layer.
摘要:
A spin transistor having wide ON/OFF operation margin and producing less noise is provided. The spin transistor includes a substrate having a channel, a source, a drain and a gate formed on the substrate. The source and the drain are formed to have magnetization directions perpendicular to the length direction of the channel. The ON/OFF operations of the spin transistor can be controlled by generating a spin-orbit coupling induced magnetic field to have a direction parallel or anti-parallel to the magnetization directions of the source and the drain.
摘要:
Disclosed herein are a method of generating a two-dimensional hole gas (2DHG) using a type-2 quantum well formed using semiconductors with different electron affinities or band gap, and a high-speed p-type semiconductor device using the 2DHG. To this end, the method includes providing a semiconductor substrate; growing a first semiconductor layer on the semiconductor substrate, growing a second semiconductor layer with a different electron affinity or band gap from the first semiconductor layer on the first semiconductor layer, and growing a third semiconductor layer with a different electron affinity or band gap from the second semiconductor layer, thereby forming a type-2 quantum well; and forming a p-type doping layer in the vicinity of the type-2 quantum well, thereby generating the 2DHG.
摘要:
Disclosed herein are a method of generating a two-dimensional hole gas (2DHG) using a type-2 quantum well formed using semiconductors with different electron affinities or band gap, and a high-speed p-type semiconductor device using the 2DHG. To this end, the method includes providing a semiconductor substrate; growing a first semiconductor layer on the semiconductor substrate, growing a second semiconductor layer with a different electron affinity or band gap from the first semiconductor layer on the first semiconductor layer, and growing a third semiconductor layer with a different electron affinity or band gap from the second semiconductor layer, thereby forming a type-2 quantum well; and forming a p-type doping layer in the vicinity of the type-2 quantum well, thereby generating the 2DHG.
摘要:
A method for simulating fluid flow includes: discretizing a space in which a fluid flows into a regular lattice; assuming that fluid particles repetitively move and collide in the lattice; deriving a univariate polynomial equation by comparing the n-th (n is a non-negative integer) order momentum of velocity between the Maxwell-Boltzmann distribution and the discretized Maxwell-Boltzmann distribution; calculating the weight coefficients corresponding to the discrete velocities of the fluid particles based on the univariate polynomial equation; and deriving a lattice Boltzmann model using the weight coefficients. A lattice Boltzmann model with superior stability and accuracy may be derived easily.