Abstract:
A device for forming a housing for a power semiconductor module arrangement includes a mold. The mold includes a first cavity including a plurality of first openings and a second opening, the second opening being coupled to a runner system, wherein the runner system is configured to inject a mold material into the first cavity through the second opening. The device further includes a plurality of sleeves or hollow bushings, wherein a first end of each of the plurality of sleeves or hollow bushings is arranged in one of the first openings, and wherein a second end of each of the plurality of sleeves or hollow bushings extends to the outside of the mold, a heating element configured to heat the mold, and a cooling element configured to cool the plurality of sleeves or hollow bushings.
Abstract:
A power module includes: a lead frame having a base region and leads; a plurality of substrates each having a first metallized side attached to the base region of the lead frame, a second metallized side opposite the first metallized side, and an insulating body that electrically isolates the first and second metallized sides from one another; at least one semiconductor die attached to the second metallized side of each substrate; and a mold compound encapsulating the semiconductor dies and part of the lead frame. The semiconductor dies are electrically interconnected within the power module to form part of a power electronics circuit. The base region of the lead frame is electrically isolated from the power electronics circuit by the insulating body of the substrates. The leads of the lead frame protrude from one or more side faces of the mold compound and form terminals of the power module.
Abstract:
A power semiconductor module includes a first substrate, wherein the first substrate includes aluminum, a first aluminum oxide layer arranged on the first substrate, a conductive layer arranged on the first aluminum oxide layer, a first semiconductor chip, wherein the first semiconductor chip is arranged on the conductive layer and is electrically connected thereto, and an electrical insulation material enclosing the first semiconductor chip, wherein the first aluminum oxide layer is configured to electrically insulate the first semiconductor chip from the first substrate.
Abstract:
A method of manufacturing a power module comprising two substrates is provided, wherein the method comprises disposing a compensation layer of a first thickness above a first substrate; disposing a second substrate above the compensation layer; and reducing the thickness of the compensation layer from the first thickness to a second thickness after the second substrate is disposed on the compensation layer.
Abstract:
A package and method of making a package is disclosed. In one example, the package includes an electronic chip having at least one pad, an encapsulant at least partially encapsulating the electronic chip, and an electrically conductive contact element extending from the at least one pad and through the encapsulant so as to be exposed with respect to the encapsulant. The electrically conductive contact element comprises a first contact structure made of a first electrically conductive material on the at least one pad and comprises a second contact structure made of a second electrically conductive material and being exposed with respect to the encapsulant. At least one of the at least one pad has at least a surface portion which comprises or is made of the first electrically conductive material.
Abstract:
A cooling apparatus includes a discrete module and a plastic housing. The discrete module includes a semiconductor die encapsulated by a mold compound, a plurality of leads electrically connected to the semiconductor die and protruding out of the mold compound and a first cooling plate at least partly uncovered by the mold compound. The plastic housing surrounds the periphery of the discrete module. The plastic housing includes a first singular plastic part which receives the discrete module and a second singular plastic part attached to a periphery of the first plastic part. The second plastic part has a cutout which exposes at least part of the first cooling plate and a sealing structure containing a sealing material which forms a water-tight seal around the periphery of the discrete module at a side of the discrete module with the first cooling plate.
Abstract:
A cooling apparatus includes a discrete module and a plastic housing. The discrete module incudes a semiconductor die encapsulated by a mold compound, a plurality of leads electrically connected to the semiconductor die and protruding out of the mold compound and a first cooling plate at least partly uncovered by the mold compound. The plastic housing surrounds the periphery of the discrete module. The plastic housing includes a first singular plastic part which receives the discrete module and a second singular plastic part attached to a periphery of the first plastic part. The second plastic part has a cutout which exposes at least part of the first cooling plate and a sealing structure containing a sealing material which forms a water-tight seal around the periphery of the discrete module at a side of the discrete module with the first cooling plate.
Abstract:
An electronic sub-module includes a leadframe, a semiconductor chip disposed on the leadframe and an encapsulation material disposed on the leadframe and on the semiconductor chip. The semiconductor chip has a first contact pad on a first main face of the semiconductor chip. The sub-module also includes a first contact element on a first main face of the electronic sub-module. The first contact element is electrically connected with the first contact pad. A surface area of the first contact element is greater than a surface area of the first contact pad.
Abstract:
An electronic module is provided, which comprises a first carrier; an electronic chip comprising at least one electronic component and arranged on the first carrier; a spacing element comprising a surface arranged on the electronic chip and being in thermal conductive connection with the at least one electronic component; a second carrier arranged on the spacing element; and a mold compound enclosing the electronic chip and the spacing element at least partially; wherein the spacing element comprises a material having a CTE value being matched with at least one other CTE.
Abstract:
In various embodiments, a substrate is provided. The substrate may include: a ceramic carrier having a first side and a second side opposite the first side; a first metal layer disposed over the first side of the ceramic carrier; a second metal layer disposed over the second side of the ceramic carrier; and a cooling structure formed into or over the second metal layer.