Abstract:
A multi-component heat spreader comprising a top component having a first surface and an opposing second surface with either a cavity extending therein from the second surface thereof or a projection extending from the second surface thereof. The multi-component heat spreader further includes at least one additional component, such as a footing component or a spacer component, having a first surface and an opposing second surface with either a cavity extending therein from the second surface thereof or a projection extending from the second surface thereof, which is opposite from the top component cavity/projection. The additional component is attached to the top component, such as by brazing, wherein the top component cavity/projection is mated to the additional component cavity/projection.
Abstract:
An integrated circuit package that includes a liquid phase thermal interface material (TIM) is described. The package may include any number of die. The liquid phase TIM can be sealed in a chamber between a die and an integrated heat spreader and bounded on the sides by a perimeter layer. The liquid phase TIM can be fixed in place or circulated, depending on application. A thermal conductivity of the liquid phase TIM can be at least 15 Watts/meter-Kelvin, according to some embodiments. A liquid phase TIM eliminates failure mechanisms present in solid phase TIMs, such as cracking due to warpage and uncontained flow out of the module.
Abstract:
A thermal interface material may be formed comprising a liquid metal and a corrosion resistant filler material. The thermal interface material may be used in an integrated circuit assembly between at least one integrated circuit device and a heat dissipation device, wherein the corrosion resistant filler material changes the physical properties of the thermal interface material, which may prevent failure modes from occurring during the operation of the integrated circuit assembly and may assist in maintaining a bond line thickness between the at least one integrated circuit device and the heat dissipation device.
Abstract:
Integrated heat spreaders having electromagnetically-formed features, and semiconductor packages incorporating such integrated heat spreaders, are described. In an example, an integrated heat spreader includes a top plate flattened using an electromagnetic forming process. Methods of manufacturing integrated heat spreaders having electromagnetically-formed features are also described.
Abstract:
Disclosed herein are embodiments of sintered heat spreaders with inserts and related devices and methods. In some embodiments, a heat spreader may include: a frame including aluminum and a polymer binder; an insert disposed in the frame, wherein the insert has a thermal conductivity higher than a thermal conductivity of the frame; and a recess having at least one sidewall formed by the frame. The polymer binder may be left over from sintering frame material and insert material to form the heat spreader.
Abstract:
A multi-component heat spreader comprising a top component having a first surface and an opposing second surface with either a cavity extending therein from the second surface thereof or a projection extending from the second surface thereof. The multi-component heat spreader further includes at least one additional component, such as a footing component or a spacer component, having a first surface and an opposing second surface with either a cavity extending therein from the second surface thereof or a projection extending from the second surface thereof, which is opposite from the top component cavity/projection. The additional component is attached to the top component, such as by brazing, wherein the top component cavity/projection is mated to the additional component cavity/projection.