Abstract:
Apparatuses including a graphics processing unit, graphics multiprocessor, or graphics processor having an error detection correction logic for cache memory or shared memory are disclosed. In one embodiment, a graphics multiprocessor includes cache or local memory for storing data and error detection correction circuitry integrated with or coupled to the cache or local memory. The error detection correction circuitry is configured to perform a tag read for data of the cache or local memory to check error detection correction information.
Abstract:
Systems and methods for improving cache efficiency and utilization are disclosed. In one embodiment, a graphics processor includes processing resources to perform graphics operations and a cache controller of a cache memory that is coupled to the processing resources. The cache controller is configured to set an initial aging policy using an aging field based on age of cache lines within the cache memory and to determine whether a hint or an instruction to indicate a level of aging has been received. In one embodiment, the cache memory configured to be partitioned into multiple cache regions, wherein the multiple cache regions include a first cache region having a cache eviction policy with a configurable level of data persistence.
Abstract:
Systems and methods for improving cache efficiency and utilization are disclosed. In one embodiment, a graphics processor includes processing resources to perform graphics operations and a cache controller of a cache memory that is coupled to the processing resources. The cache controller is configured to set an initial aging policy using an aging field based on age of cache lines within the cache memory and to determine whether a hint or an instruction to indicate a level of aging has been received.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to improve FPGA pipeline emulation efficiency on CPUs. An example disclosed apparatus includes a loop detector to identify a register shift loop in field programmable gate array (FPGA) code, an unroller to shift and store pipeline stages in the register shift loop to a temporary unroll array, an intermediate canceller to cancel out intermediate load and store values of the temporary unroll array to retain last shifted values of the pipeline stages, and a propagator to improve emulation efficiency of the FPGA code by generating a scalar loop of the retained last shifted values for a vectorization input.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to improve FPGA pipeline emulation efficiency on CPUs. An example disclosed apparatus includes a loop detector to identify a register shift loop in field programmable gate array (FPGA) code, an unroller to shift and store pipeline stages in the register shift loop to a temporary unroll array, an intermediate canceller to cancel out intermediate load and store values of the temporary unroll array to retain last shifted values of the pipeline stages, and a propagator to improve emulation efficiency of the FPGA code by generating a scalar loop of the retained last shifted values for a vectorization input.
Abstract:
In an embodiment, a method is provided. The method includes managing user-level threads on a first instruction sequencer in response to executing user-level instructions on a second instruction sequencer that is under control of an application level program. A first user-level thread is run on the second instruction sequencer and contains one or more user level instructions. A first user level instruction has at least 1) a field that makes reference to one or more instruction sequencers or 2) implicitly references with a pointer to code that specifically addresses one or more instruction sequencers when the code is executed.
Abstract:
In an embodiment, a method is provided. The method includes managing user-level threads on a first instruction sequencer in response to executing user-level instructions on a second instruction sequencer that is under control of an application level program. A first user-level thread is run on the second instruction sequencer and contains one or more user level instructions. A first user level instruction has at least 1) a field that makes reference to one or more instruction sequencers or 2) implicitly references with a pointer to code that specifically addresses one or more instruction sequencers when the code is executed.
Abstract:
Systems and methods for cache utilization are disclosed. In one embodiment, a graphics processor includes processing resources to perform graphics operations and a cache controller of a cache memory that is coupled to the processing resources. The cache controller is configured to set an initial aging policy using an aging field based on age of cache lines within the cache memory and to determine whether a hint or an instruction to indicate a level of aging has been received. In one embodiment, the cache memory configured to be partitioned into multiple cache regions, wherein the multiple cache regions include a first cache region having a cache eviction policy with a configurable level of data persistence.
Abstract:
Apparatuses including a graphics processing unit, graphics multiprocessor, or graphics processor having an error detection correction logic for cache memory or shared memory are disclosed. In one embodiment, a graphics multiprocessor includes cache or local memory for storing data and error detection correction circuitry integrated with or coupled to the cache or local memory. The error detection correction circuitry is configured to perform a tag read for data of the cache or local memory to check error detection correction information.
Abstract:
In one example, a system for generating vector based selection control statements can include a processor to determine a vector cost of the selection control statement is below a scalar cost and determine the selection control statement is to be executed in a sorted order based on dependencies between branch instructions of the selection control statement. The processor can also determine a program ordering of labels of the selection control statement does not match a mathematical ordering of the labels and execute the selection control statement with a vector of values, wherein the selection control statement is to be executed based on a jump table and a sorted unique value technique, wherein the sorted unique value technique comprises selecting at least one of the plurality of branch instructions from the jump table.