Abstract:
Embodiments for providing demodulation reference signals to provide side information for interference cancellation are generally described herein. In some embodiments, a sub-frame is prepared comprising two slots and configuring a physical resource block (PRB) for each slot, wherein each PRB comprises twelve Orthogonal Frequency Division Multiplexing (OFDM) subcarriers transmitting for a duration of 7 OFDM symbols per slot. In resource elements on each of three of twelve OFDM subcarriers, two pairs of demodulation reference signals (DMRS) are allocated to form three DMRS sets. Symbols are mapped with a first modulation for the two pairs of demodulation reference signals to three of the twelve OFDM subcarriers for transmission. A second modulation is added to a first of the three DMRS sets and a third modulation is added to a second of the three DMRS sets to indicate side information regarding an interfering signal for use in mitigating the interfering signal.
Abstract:
A method at a client includes monitoring a data connection to a server, adjusting a value of a channel quality indicator based on the detection of a start of a data transmission from the server, and transmitting the adjusted value of the channel quality indicator to the server.
Abstract:
Embodiments for providing demodulation reference signals to provide side information for interference cancellation are generally described herein. In some embodiments, a sub-frame is prepared comprising two slots and configuring a physical resource block (PRB) for each slot, wherein each PRB comprises twelve Orthogonal Frequency Division Multiplexing (OFDM) subcarriers transmitting for a duration of 7 OFDM symbols per slot. In resource elements on each of three of twelve OFDM subcarriers, two pairs of demodulation reference signals (DMRS) are allocated to form three DMRS sets. Symbols are mapped with a first modulation for the two pairs of demodulation reference signals to three of the twelve OFDM subcarriers for transmission. A second modulation is added to a first of the three DMRS sets and a third modulation is added to a second of the three DMRS sets to indicate side information regarding an interfering signal for use in mitigating the interfering signal.
Abstract:
Embodiments for providing demodulation reference signals to provide side information for interference cancellation are generally described herein. In some embodiments, a sub-frame is prepared comprising two slots and configuring a physical resource block (PRB) for each slot, wherein each PRB comprises twelve Orthogonal Frequency Division Multiplexing (OFDM) subcarriers transmitting for a duration of 7 OFDM symbols per slot. In resource elements on each of three of twelve OFDM subcarriers, two pairs of demodulation reference signals (DMRS) are allocated to form three DMRS sets. Symbols are mapped with a first modulation for the two pairs of demodulation reference signals to three of the twelve OFDM subcarriers for transmission. A second modulation is added to a first of the three DMRS sets and a third modulation is added to a second of the three DMRS sets to indicate side information regarding an interfering signal for use in mitigating the interfering signal.
Abstract:
Technology for improving the selection, transfer, and storage of user equipment (UE) radio capability information is disclosed. A cellular mobile network can be configured to identify radio-access-technology (RAT)-specific radio-capability information relating to RATs supported in the cellular mobile network and communicate the RAT-specific radio-capability information to a UE. The UE can use the RAT-specific radio-capability information to help determine which UE radio capability information to send to the network. In addition, the UE may store a list of supported frequency bands and/or supported frequency-band combinations (LOSB) indexed by network operators and use the list to help determine which UE radio capability information to send to the network. A network node may also selectively remove unnecessary information from UE radio capability information before storing the UE radio capability information at a mobility management entity (MME).
Abstract:
According to an aspect of this disclosure a communication terminal device is provided, comprising: a transceiver configured to communicate with a communication device in accordance with an uplink resource allocation; a determiner configured to determine a desired power consumption for data transmissions from the communication terminal device to the communication device, and to determine a suitable uplink resource allocation based on the desired power consumption; and a controller configured to determine a communication behavior of the communication terminal device with the communication device based on the suitable uplink resource allocation and to control the transceiver according to the determined communication behavior.
Abstract:
A method for controlling a bandwidth used for processing a baseband transmit signal by a transmit path of a transmitter is provided. The method includes generating a first comparison result by comparing, to a threshold value, a first number of physical resource blocks allocated to the transmitter for a first transmission time interval. Further, the method includes generating a second comparison result by comparing, to the threshold value, a second number of physical resource blocks allocated to the transmitter for a subsequent second transmission time interval. The method additionally includes adjusting the bandwidth based on the first and the second comparison results.
Abstract:
A method for controlling a bandwidth used for processing a baseband transmit signal by a transmit path of a transmitter is provided. The method includes generating a first comparison result by comparing, to a threshold value, a first number of physical resource blocks allocated to the transmitter for a first transmission time interval. Further, the method includes generating a second comparison result by comparing, to the threshold value, a second number of physical resource blocks allocated to the transmitter for a subsequent second transmission time interval. The method additionally includes adjusting the bandwidth based on the first and the second comparison results.
Abstract:
Embodiments of an enhanced node B (eNB) and methods for network-assisted interference cancellation with reduced signaling in a 3GPP LTE network are generally described herein. In some embodiments, the number of transmission options is reduced by introducing a smaller signaling codebook. In some embodiments, higher-layer feedback from the UE to the eNodeB is established to inform the eNB about certain NA-ICS capabilities of the UE. In some embodiments, the number of signaling options is reduced by providing only certain a priori information. In some embodiments, correlations in the time and/or frequency domain are exploited for reducing the signaling message. In some embodiments, differential information is signaled in the time and/or frequency domain for reducing the signaling message.
Abstract:
Embodiments of an enhanced node B (eNB) and methods for network-assisted interference cancellation with reduced signaling in a 3GPP LTE network are generally described herein. In some embodiments, the number of transmission options is reduced by introducing a smaller signaling codebook. In some embodiments, higher-layer feedback from the UE to the eNodeB is established to inform the eNB about certain NA-ICS capabilities of the UE. In some embodiments, the number of signaling options is reduced by providing only certain a priori information. In some embodiments, correlations in the time and/or frequency domain are exploited for reducing the signaling message. In some embodiments, differential information is signaled in the time and/or frequency domain for reducing the signaling message.