Abstract:
A system and a method for controlling communication between a network and a terminal device, the method including: selecting a plurality of network access nodes based on each network access node being associated with a distinguishing transmission feature transmission feature; allocating a digital bit pattern to each distinguishing transmission feature; modifying a transmission to the terminal device based on the digital bit pattern; transmitting the transmission to the terminal device; receiving the transmission at the terminal device; identifying the distinguishing transmission feature from the transmission; and processing the transmission based on the digital bit pattern allocated to the distinguishing transmission feature.
Abstract:
Embodiments of an Evolved Node-B (eNB), shared spectrum controller and methods for communication in shared spectrum are generally described herein. A mobile network shared spectrum controller may operate as part of a domain of a mobile network. A public shared spectrum controller may operate externally to the mobile network domain. The mobile network shared spectrum controller and the public shared spectrum controller may operate cooperatively to perform operations of a shared spectrum controller, such as management of secondary usage of shared spectrum by a group of eNBs. The mobile network shared spectrum controller may obfuscate at least a portion of network configuration information from the public shared spectrum controller to enable maintenance of confidential information a within the mobile network domain.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for presenting, by a user equipment (UE), a parameter of a network policy to a user, and receiving an indication of the user preference related to that parameter of the network policy. In response to receiving the indication, the UE may select one or more radio links with which the UE should communicatively couple based on the user preference and the network policy. Other embodiments may be described and/or claimed.
Abstract:
Various techniques for collective perception messaging are disclosed herein. In an example, a machine receives, from a source device, a signal value for provision to a sink device, the signal value corresponding to a measurement of an environmental value. The machine accesses, from a storage device, an error term for the signal value. The machine accesses, from the storage device, a source reliability term for the source device. The machine accesses, from the storage device, a source-sink relation term based on the source device and the sink device. The machine determines a distribution for the environmental value based on the error term, the source reliability term, and the source-sink relation term. The machine determines, based on the distribution for the environmental value, whether the signal value is reliable.
Abstract:
A communication device is provided that includes a baseband circuit and a transmitter configured to transmit a first signal and a projected signal. The baseband circuit is configured to determine the projected signal based on an estimated signal state information such that an energy of a shaped projected signal is smaller than an energy of a shaped signal. The estimated signal state information is an estimate of a signal state information based on the first signal and a received signal that is received by a receiver of the second communication device. The shaped projected signal is the projected signal received by the receiver of the second communication device and filtered by a filter of the second communication device. The shaped signal is the received signal filtered by the filter of the second communication device.
Abstract:
Embodiments of an Evolved Node-B (eNB), shared spectrum controller and methods for communication in shared spectrum are generally described herein. A mobile network shared spectrum controller may operate as part of a domain of a mobile network. A public shared spectrum controller may operate externally to the mobile network domain. The mobile network shared spectrum controller and the public shared spectrum controller may operate cooperatively to perform operations of a shared spectrum controller, such as management of secondary usage of shared spectrum by a group of eNBs. The mobile network shared spectrum controller may obfuscate at least a portion of network configuration information from the public shared spectrum controller to enable maintenance of confidential information within the mobile network domain.
Abstract:
A method for dynamically handling traffic data can include obtaining location data and sensor data corresponding to at least one object located in a traffic area. The location data and/or the sensor data then can be selectively blurred to preserve privacy or meet privacy regulations. The blurring may be implemented by adding noise to the location data and/or the sensor data. The blurred data may then be transmitted to another entity.
Abstract:
Systems and methods that adapt software components encoded for execution by a virtual machine to the specific architecture of a target platform are provided. These systems and methods combine the portability benefits of a virtual machine architecture with the power conservation and computation efficiency benefits normally associated with native implementations. More particularly, in some embodiments, a compiler configured to compile software components encoded for execution by a virtual machine is enhanced to identify hardware processing elements available on a target platform and to adapt the software components to utilize the identified hardware processing elements. In at least one embodiment, the adaptation performed by the enhanced compiler takes the form of compression or extension.
Abstract:
Various embodiments to enable Spectrum Access System (SAS) interference mitigation options are disclosed herein. In one embodiment, an apparatus is provided. The apparatus includes a memory to store a data sequence, and one or more processing devices coupled to the memory. The processing devices to generate an interference metric associated with a first group and a second group of infrastructure nodes of a Long-Term Evolution (LTE) network infrastructure based on measurement information. The measurement information comprises measurements related to the transmission of data sequences associated with the first group and the second group. Thereupon, configuration settings are determined for infrastructure nodes of the first group and second group based on the generated interference metric. Each configuration setting represents a frequency band and transmission power level for a corresponding infrastructure node to access data in the LTE network infrastructure.
Abstract:
A method and device for controlling access to a limited access spectrum, the method including: authorizing a mobile communications device in a predefined geographic area to communicate via the limited access spectrum, wherein access by the mobile communications device to the limited access spectrum is based on a user profile defining access rights to the limited access spectrum; determining a load level of communications on the limited access spectrum in the predefined geographic area; and allocating a communications timing parameter to the mobile communications device based on the load level. In addition, the communications timing parameter may be further based on a priority status of a recipient of the communication from the mobile communications device.