Abstract:
Methods and apparatuses are described herein for paring an unmanned aerial vehicle (UAV) with a UAV-controller (UAV-C). For example, a UAV having a UAV wireless transmit/receive unit (UAV WTRU) may transmit, to an access and mobility management function (AMF), a non-access stratum (NAS) request message that includes a paring request indication and a UAV-controller (UAV-C) identification (UAV-C ID). The UAV-C ID may be carried in a paring request to an unmanned aerial system (UAS) service supplier (USS)/UAS traffic management (UTM) for paring authorization of the UAV with a UAV-C associated with the UAV-C ID. The UAV may receive, from the AMF, a NAS response message that includes an unmanned aerial system (UAS) identification (UAS ID) indicating that the UAV is paired with the UAV-C, wherein the UAS ID is assigned by the USS/UTM.
Abstract:
A method and apparatus are disclosed for communication in a Millimeter Wave Hotspot (mmH) backhaul system which uses mesh nodes. A mmH mesh node may receive a control signal which includes a total number of available control slots. The mesh node may determine the number of iterations of a resource scheduling mechanism that can be made during the time period of all available control slots, based on the number of neighbor nodes for the mesh node. Further, the mesh node may receive control slot information, including information about traffic queues and priorities. The mesh node may then perform resource scheduling using the resource scheduling mechanism based on the currently received control slot information and control slot information received in previous iterations of resource scheduling. The mesh node may also adjust a preamble based on a time between a last packet transmission and a current packet transmission to a neighboring node.
Abstract:
Methods and apparatus may perform dual-band or multi-band mesh operations. A dual-band mesh station (MSTA) capable of operating in an O-band and a D-band may seek to join a mesh network, and may receive O-band beacons from at least one MSTA in the mesh network, where the O-band beacons may include D-band mesh information. The joining MSTA may transmit D-band beacons in a time-period specified by the O-band beacon, and on a condition that a beacon response message is received, may further transmit D-band association information via O-band management frames to join mesh network on the D-band. The joining MSTA may perform contention-free scheduled access in the D-band while sharing D-band transmission information in the O-band to enable concurrent communication in the D-band by neighboring multi-band MSTAs.
Abstract:
Methods and apparatus are described. A long term evolution (LTE) base station includes a processor and a transceiver, which transmit first LTE data to a wireless transmit/receive unit (WTRU) using LTE frequencies. The LTE data is at a time defined by LTE transmission time interval (TTI) boundaries. The processor maps an LTE class of second LTE data to an access class associated with IEEE 802.11e access and transmits the second LTE data to the WTRU using an IEEE 802.11 associated frequency. A transmission time of the second LTE data is based on an LTE TTI boundary after sensing that an IEEE 802.11 associated frequency is not busy.
Abstract:
A station (STA) may include an antenna and a processor operatively coupled to the antenna. The antenna and the processor may be configured to receive a request message from an access point (AP). The request message may include identity information of one or more other STAs and an indication to perform measurements of the one or more other STAs. The antenna and the processor may be further configured to perform the measurements of the one or more STAs to determine a link metric associated with each STA of the one or more other STAs. The antenna and the processor may be further configured to send a reply message to the AP after the link metric associated with each STA of the one or more STAs is determined. The reply message may include results of the determination.
Abstract:
Systems, methods, and instrumentalities are disclosed for joining a node to a network, the method comprising a station associated with a first node sending a first beacon, wherein the first beacon is sent with an indication that the first beacon is sent from a station entity, and wherein the station associated with the first node belongs to a first personal basic service set (PBSS); the station associated with the first node receiving a transmission from a station associated with a second node that indicates that the station associated with the second node wants to associate with the station associated with a first node, wherein the station associated with the second node is unassociated with the first PBSS; the station associated with the first node sending a message to a PBSS Control Point (PCP) associated with a third node, wherein the message is associated with handover preparation; the station associated with the first node receiving acceptance to change personality to a PCP and perform handover; and the station associated with the first node changing to a PCP and performing handover, wherein the station associated with the first node forms a second PBSS and does not belong to the first PBSS, and wherein handover comprises the PCP associated with the first node associating with the station associated with the second node.
Abstract:
A method, apparatus and system for wireless communication are described. The method includes transmitting and receiving data to and from one or more wireless transmit/receive units (WTRUs) via an underlay system access link. The underlay system is non-standalone, and control information is provided from an overlay system. An underlay base station is linked to other underlay base stations to implement a mesh backhaul. The method also includes transmitting and receiving at least a portion of the data to or from an overlay base station via backhaul links and receiving control data from the overlay base station. The data is split at a packet data convergence protocol (PDCP) entity, and the PDCP entity terminates in the overlay base station and a radio link control (RLC) entity terminates in the underlay base station.
Abstract:
Procedures, methods, architectures, apparatuses, systems, devices, and computer program products includes measuring Channel State Information (CSI) associated with at least one reference signal and determining a trained Artificial Intelligence (AI) model to generate at least a portion of a report that includes the CSI associated with the at least one reference signal. The report comprising the CSI associated with the at least one reference signal is transmitted.
Abstract:
A method and apparatus are disclosed for communication in a Millimeter Wave Hotspot (mmH) backhaul system which uses mesh nodes. A mmH mesh node may receive a control signal which includes a total number of available control slots. The mesh node may determine the number of iterations of a resource scheduling mechanism that can be made during the time period of all available control slots, based on the number of neighbor nodes for the mesh node. Further, the mesh node may receive control slot information, including information about traffic queues and priorities. The mesh node may then perform resource scheduling using the resource scheduling mechanism based on the currently received control slot information and control slot information received in previous iterations of resource scheduling. The mesh node may also adjust a preamble based on a time between a last packet transmission and a current packet transmission to a neighboring node.
Abstract:
Methods, apparatuses, systems, etc., directed to performing positioning of a wireless transmit/receive unit (WTRU) while it is in idle mode and/or inactive mode (collectively “idle/inactive mode”) in NR are disclosed herein. Performing positioning, including positioning measurement and/or reporting, in idle/inactive mode may allow for increased positioning accuracy and/or decreased latency of location determination. In various embodiments, a WTRU in idle/inactive mode may transmit a positioning measurement report in various ways, including (i) in a Random-Access Channel (RACH) preamble; (ii) appended to a RACH preamble; and/or (iii) in a Physical Uplink Shared Channel. In various embodiments, a WTRU in idle/inactive mode may transmit uplink-based positioning related reference signals. In various embodiments, a WTRU in an idle/inactive mode may transmit, over a dedicated physical channel, (e.g., downlink) positioning measurement reports and/or reference signals (RSs) for uplink positioning measurements.