摘要:
A base station may sense, on a cell using unlicensed spectrum, that the unlicensed spectrum is available for transmission. The base station may transmit, after sensing that the unlicensed spectrum is available, consecutive subframes. Each subframe may include a physical downlink control channel and a physical downlink shared channel.
摘要:
A visible light communication (VLC) device for lighting and data transmission is disclosed. The VLC device may comprise circuitry configured to receive a first stream of bits and determine a first switchpoint for transmitting the first stream of bits and first filler data. The VLC device may further comprise red, green, and blue (RGB) light emitting diodes (LEDs) configured to transmit the first stream of bits and the first filler data in the visible light spectrum. The first filler data may begin to be transmitted at the first switchpoint. Similar to the first stream of bits, a second stream of bits may be received and transmitted by the RGB LEDs of the VLC device. In this way, a naked eye of a human may not detect flicker of the VLC device.
摘要:
Systems, methods, and instrumentalities are provided to implement a method for radio environment, measurement (REM) scheduling, information extraction, storage and processing to generate terrain and object mapping/identification using higher frequency radio signals, directional transmission techniques and external database information. Described are wireless transmit/receive units (WTRUs) comprising a processor configured to, when the WTRU is in an idle state, receive a common control channel from a millimeter wave base station (mB), decode a measurement schedule included in the common control channel, wherein the measurement schedule includes one or more slots during which sounding signals will be sent, and, determine a slot during which the WTRU is available to measure a sounding signal, and, when the WTRU is in a connected state, receive a dedicated control channel from a millimeter wave base station (mB), decode a measurement schedule and a receiver configuration included in the dedicated control channel, wherein the measurement schedule and the receiver configuration are specific to the WTRU, and wherein the measurement schedule includes one or more slots during which sounding signals will be sent, and determine a slot during which the WTRU is available to measure a sounding signal.
摘要:
Methods and apparatuses are described. A method of configuring a Radio Resource Control (RRC)_Connected wireless transmit/receive unit (WTRU) for wireless local area network (WLAN) cell measurement includes receiving, by the WTRU, an RRCConnectionReconfiguration message. The RRCConnectionReconfiguration message includes a measurement configuration that includes at least one WLAN measurement object on which the WTRU is to perform measurement and at least one measurement reporting configuration including at least an indication that measurement reporting is to be at least one of periodic and event-triggered. At least one measurement is performed on the at least one WLAN measurement object. A measurement report is provided based on the at least one measurement reporting configuration.
摘要:
A method and apparatus for operating supplementary cells in licensed exempt (LE) spectrum. An aggregating cell operating in a frequency division duplex (FDD) licensed spectrum is aggregated with a LE supplementary cell operating in a time sharing mode for uplink (UL) and downlink (DL) operations. The LE supplementary cell may be an FDD supplementary cell dynamically configurable between an UL only mode, a DL only mode, and a shared mode, to match requested UL and DL traffic ratios. The LE supplementary cell may be a time division duplex (TDD) supplementary cell. The TDD supplementary cell may be dynamically configurable between multiple TDD configurations. A coexistence capability for coordinating operations between the LE supplementary cell with other systems operating in the same channel is provided. Coexistence gaps are provided to measure primary/secondary user usage and permit other systems operating in the LE supplementary cell channel to access the channel.
摘要:
A cellular communications network may be configured to leverage a millimeter wave (mmW) mesh network. Base stations may be configured to operate as mmW base stations (tnBs). Such base stations may be configured to participate in the mmW mesh network and to access the cellular communications network (e.g., via cellular access links). A network device of the cellular communications network (e.g., an eNB) may operate as a control entity with respect to one or more niBs. Such a network device may govern mesh backhaul routing with respect to the cellular communications network and the mmW mesh network. Such a network device may configure the mmW mesh network, for example by performing a process to join a new mB to the mmW mesh network. A WTRU may send and receive control information via a cellular access fink and may send and receive data via the mmW mesh network.
摘要:
Methods and apparatus for changing cell range coverage are disclosed. The coverage may be changed on a per-sub-frame basis. An antenna beam elevation tilting angle may be adjusted to provide different effective downlink (DL) coverage. For example, a subframe may be a small tilt subframe or a large tilt subframe. A network or evolved NodeB (eNB) may determine data channel transmission power to adjust cell range per subframe. Low Power Subframe (LPS) may be used alone or with Almost Blank Subframe (ABS) to transmit data. Timing Advance (TA) handling for uplink (UL) transmissions is described. A common TA (CTA) may be determined for multi-site UL signaling. UL power control may be determined for UL transmission to multiple sites. Radio Link Monitoring (RLM) may be performed for multiple sites on a carrier frequency. A wireless transmit/receive unit (WTRU) may maintain synchronization in selected subframes for multiple cells.
摘要:
Methods and apparatus are described. A long term evolution (LTE) base station includes a processor and a transceiver, which transmit first LTE data to a wireless transmit/receive unit (WTRU) using LTE frequencies. The LTE data is at a time defined by LTE transmission time interval (TTI) boundaries. The processor maps an LTE class of second LTE data to an access class associated with IEEE 802.11e access and transmits the second LTE data to the WTRU using an IEEE 802.11 associated frequency. A transmission time of the second LTE data is based on an LTE TTI boundary after sensing that an IEEE 802.11 associated frequency is not busy.
摘要:
A method and apparatus for operating supplementary cells in licensed exempt (LE) spectrum. An aggregating cell operating in a frequency division duplex (FDD) licensed spectrum is aggregated with a LE supplementary cell operating in a time sharing mode for uplink (UL) and downlink (DL) operations. The LE supplementary cell may be an FDD supplementary cell dynamically configurable between an UL only mode, a DL only mode, and a shared mode, to match requested UL and DL traffic ratios. The LE supplementary cell may be a time division duplex (TDD) supplementary cell. The TDD supplementary cell may be dynamically configurable between multiple TDD configurations. A coexistence capability for coordinating operations between the LE supplementary cell with other systems operating in the same channel is provided. Coexistence gaps are provided to measure primary/secondary user usage and permit other systems operating in the LE supplementary cell channel to access the channel.
摘要:
A method, apparatus and system for wireless communication are described. The method includes transmitting and receiving data to and from one or more wireless transmit/receive units (WTRUs) via an underlay system access link. The underlay system is non-standalone, and control information is provided from an overlay system. An underlay base station is linked to other underlay base stations to implement a mesh backhaul. The method also includes transmitting and receiving at least a portion of the data to or from an overlay base station via backhaul links and receiving control data from the overlay base station. The data is split at a packet data convergence protocol (PDCP) entity, and the PDCP entity terminates in the overlay base station and a radio link control (RLC) entity terminates in the underlay base station.