Abstract:
A method and apparatus of performing discontinuous reception (DRX) and downlink inter-frequency and inter-radio access technology (RAT) measurements in CELL_FACH state are disclosed. While in DRX mode, a wireless transmit/receive unite (WTRU) may perform inter-frequency and inter-RAT measurements in a measurement occasion that fall into a DRX period. The WTRU may take the measurements on first predetermined number of frame in which a DRX frame would coincide after a last reception frame if DRX operation was ongoing. The WTRU may periodically wake up for downlink reception in CELL_FACH state in accordance with common DRX pattern that is common to all WTRUs in a cell or may wake up from DRX upon reception of the order and receiving a common traffic.
Abstract:
A method and apparatus for radio link synchronization and power control in CELL_FACH state and idle mode are disclosed. A wireless transmit/receive unit (WTRU) transmits a random access channel (RACH) preamble and receives an acquisition indicator acknowledging the RACH preamble via an acquisition indicator channel (AICH) and an index to an enhanced dedicated channel (E-DCH) resource. The WTRU determines a start of an E-DCH frame. An F-DPCH timing offset is defined with respect to one of the RACH access slot and an AICH access slot carrying the acquisition indicator. A relative F-DPCH timing offset may be signaled to the WTRU and the WTRU may determine a start of an E-DCH frame based on the relative F-DPCH timing offset and timing of an AICH access slot including the acquisition indicator. The WTRU may transmit a dedicated physical control channel (DPCCH) power control preamble before starting an E-DCH transmission.
Abstract:
Systems, methods, and apparatus may be used to provide assistance for connection procedures in a hierarchical network where macro cells may be operating in licensed spectrum while small cells may be operating in dynamic and shared spectrums, such as TVWS. This may be done, for example, to allow an LTE system performing carrier aggregation (CA) to reconfigure itself to change from a supplementary cell (SuppCell) in one dynamic and shared spectrum channel to a SuppCell in another dynamic and shared spectrum channel.
Abstract:
A method and apparatus for radio link synchronization and power control in CELL_FACH state and idle mode are disclosed. A wireless transmit/receive unit (WTRU) transmits a random access channel (RACH) preamble and receives an acquisition indicator acknowledging the RACH preamble via an acquisition indicator channel (AICH) and an index to an enhanced dedicated channel (E-DCH) resource. The WTRU determines a start of an E-DCH frame. An F-DPCH timing offset is defined with respect to one of the RACH access slot and an AICH access slot carrying the acquisition indicator. A relative F-DPCH timing offset may be signaled to the WTRU and the WTRU may determine a start of an E-DCH frame based on the relative F-DPCH timing offset and timing of an AICH access slot including the acquisition indicator. The WTRU may transmit a dedicated physical control channel (DPCCH) power control preamble before starting an E-DCH transmission.
Abstract:
Systems and methods for using a communication system in a spectrum are provided. For example, a random access or RACH procedure may be performed where the random access or RACH procedure may be configured to reduce secondary interference and/or to be used in a pixel-based environment. The random access or RACH procedure may include selecting a RACH preamble; sending a RACH preamble and/or format information; determining a transmission power of the RACH preamble and/or the format information; determining a random access radio network temporary identifier (RA-RNTI) and preamble ID associated with the RACH preamble; and/or selecting a physical RACH (PRACH).
Abstract:
Systems, methods, and apparatus may be used to provide assistance for connection procedures in a hierarchical network where macro cells may be operating in licensed spectrum while small cells may be operating in dynamic and shared spectrums, such as TVWS. This may be done, for example, to allow an LTE system performing carrier aggregation (CA) to reconfigure itself to change from a supplementary cell (SuppCell) in one dynamic and shared spectrum channel to a SuppCell in another dynamic and shared spectrum channel.
Abstract:
Systems, methods, and apparatus may be used to provide assistance for connection procedures in a hierarchical network where macro cells may be operating in licensed spectrum while small cells may be operating in dynamic and shared spectrums, such as TVWS. This may be done, for example, to allow an LTE system performing carrier aggregation (CA) to reconfigure itself to change from a supplementary cell (SuppCell) in one dynamic and shared spectrum channel to a SuppCell in another dynamic and shared spectrum channel.
Abstract:
Methods and devices may be provided for aggregating component carriers in the licensed spectrum with at least one component carriers in the licensed exempt spectrum. Control information may be processed in a wireless transmit/receive unit (WTRU) while receiving and sending information on a primary component carrier (PCC) and a supplementary component carrier (SuppCC). A PCC subframe with a control portion and a data portion may be received. Resource assignment information associated with a downlink shared channel on the PCC may be embedded in the control portion of the subframe. Based on the resource assignment information on the PCC, resource assignment information associated with a downlink shared channel on the SuppCC may be identified in the data portion of the PCC subframe. A SuppCC subframe of the shared channel on the SuppCC may be processed as per the identified resource assignment information associated with the downlink shared channel on the SuppCC.
Abstract:
A method and apparatus for signaling in a wireless transmit receive unit (WTRU). The method includes the WTRU receiving a value of a maximum number of retransmissions and retransmitting data in a plurality of hybrid automatic retransmission request (HARQ) processes limited by the value of a maximum number of retransmission. The WTRU is configured to receive a cell-specific, fixed or absolute grant on a broadcast channel.
Abstract:
A first apparatus in a wireless communication system, the first apparatus including circuitry configured to trigger a Random Access Channel (RACH) procedure; select a two-step RACH procedure from among a plurality of RACH procedures as a RACH type to be performed; select a MsgA transmission resource; transmit a MsgA; and monitor for a network response from a second apparatus.