摘要:
A system-on-chip (SoC) includes a host CPU on a CPU fabric, the host CPU including multiple processor cores, each associated with multiple security attributes. The SoC includes a secure asset on a network-on-chip and a security co-processor. The security co-processor includes circuitry to detect requests from the processor cores targeting the secure asset and security function processing requests, to determine, based on associated security attributes, whether the core or function is authorized to access the secure asset, to allow the request to be issued, if the core or function is so authorized, and to prevent its issuance, if not. The determination may be dependent on a signal from the CPU fabric indicating whether the host CPU can modify its security attributes or they are locked down. The security co-processor may have the highest security level and may be the only master on the SoC that can access the secure asset.
摘要:
A system on a chip is described that comprises a processor and a set of memory components that store instructions, which when executed by the processor cause the system on a chip to: generate, by a set of data collectors of a telemetry subsystem, a set of streams of telemetry metadata describing operation of the processor, forward one or more streams of telemetry metadata from the set of streams of telemetry metadata to a set of machine learning-driven adaptation decision models, receive, from the set of machine learning-driven adaptation decision models, a set of configuration parameters for controlling operation of the processor based on the one or more streams of telemetry metadata, and modify operation of the processor based on the set of configuration parameters.
摘要:
A method for managing computing includes replicating a subset of a machine state of a first computing device onto a second computing device, wherein the subset of the machine state is required to execute machine code. Execution of the machine code is offloaded to the second computing device.
摘要:
Embodiments of techniques and systems associated with device-to-device (D2D) resource sharing are described. In some embodiments, a D2D communication channel between a first device and a second device is established and a sharing request is received at the first device, from the second device, including a credential identifying the second device. Data representative of a first resource locally available to the first device, but not locally available to the second device, is provided to the second device by the first device. Use of the first resource may be controlled in accordance with an instruction transmitted to the first device from the second device. Other embodiments may be described and/or claimed.
摘要:
In one embodiment, a processor comprises a processor optimization unit. The processor optimization unit is to collect runtime information associated with a computing device, wherein the runtime information comprises information indicating a performance of the computing device during program execution. The processor optimization unit is further to receive runtime optimization information for the computing device, wherein the runtime optimization information comprises information associated with one or more runtime optimizations for the computing device, and wherein the runtime optimization information is determined based on an analysis of the collected runtime information. The processor optimization unit is further to perform the one or more runtime optimizations for the computing device based on the runtime optimization information.
摘要:
In an embodiment, a method is provided. The method includes managing user-level threads on a first instruction sequencer in response to executing user-level instructions on a second instruction sequencer that is under control of an application level program. A first user-level thread is run on the second instruction sequencer and contains one or more user level instructions. A first user level instruction has at least 1) a field that makes reference to one or more instruction sequencers or 2) implicitly references with a pointer to code that specifically addresses one or more instruction sequencers when the code is executed.
摘要:
Embodiments of techniques and systems associated with device-to-device (D2D) resource sharing are described. In some embodiments, a D2D communication channel between a first device and a second device is established and a sharing request is received at the first device, from the second device, including a credential identifying the second device. Data representative of a first resource locally available to the first device, but not locally available to the second device, is provided to the second device by the first device. Use of the first resource may be controlled in accordance with an instruction transmitted to the first device from the second device. Other embodiments may be described and/or claimed.
摘要:
Embodiments of techniques and systems associated with device-to-device (D2D) resource sharing are described. In some embodiments, a D2D communication channel between a first device and a second device is established and a sharing request is received at the first device, from the second device, including a credential identifying the second device. Data representative of a first resource locally available to the first device, but not locally available to the second device, is provided to the second device by the first device. Use of the first resource may be controlled in accordance with an instruction transmitted to the first device from the second device. Other embodiments may be described and/or claimed.
摘要:
A processor includes a front end including circuitry to decode a first instruction to set a performance register for an execution unit and a second instruction, and an allocator including circuitry to assign the second instruction to the execution unit to execute the second instruction. The execution unit includes circuitry to select between a normal computation and an accelerated computation based on a mode field of the performance register, perform the selected computation, and select between a normal result associated with the normal computation and an accelerated result associated with the accelerated computation based on the mode field.
摘要:
A system-on-chip (SoC) includes a host CPU on a CPU fabric, the host CPU including multiple processor cores, each associated with multiple security attributes. The SoC includes a secure asset on a network-on-chip and a security co-processor. The security co-processor includes circuitry to detect requests from the processor cores targeting the secure asset and security function processing requests, to determine, based on associated security attributes, whether the core or function is authorized to access the secure asset, to allow the request to be issued, if the core or function is so authorized, and to prevent its issuance, if not. The determination may be dependent on a signal from the CPU fabric indicating whether the host CPU can modify its security attributes or they are locked down. The security co-processor may have the highest security level and may be the only master on the SoC that can access the secure asset.