Abstract:
A method for detecting a transmission from an interfering radio cell includes: receiving a signal comprising transmissions from a serving radio cell and from a plurality of interfering radio cells, wherein a reference symbol of a transmission from at least one interfering radio cell of the plurality of interfering radio cells is colliding with a reference symbol of a transmission from the serving radio cell; generating a set of transmission signal hypotheses, each of which is dependent on at least one interferer parameter of the at least one interfering radio cell; obtaining at least one interferer radio cell identifier; and detecting a transmission from at least one interfering radio cell of the plurality of interfering radio cells in the received signal based on the at least one interferer radio cell identifier and the set of transmission signal hypotheses.
Abstract:
A channel estimation circuit (100) includes an input interface (110). The input interface (110) is configured to receive a plurality of pilot symbols from a communication channel. Furthermore, the channel estimation circuit (100) includes processing circuitry (120). The processing circuitry (120) is configured to generate a channel autocorrelation matrix and at least one channel cross-correlation vector. The generating of the channel autocorrelation matrix and the channel cross-correlation vector can be based on predetermined statistical information on the communication channel. Additionally, the processing circuitry (120) is configured to generate a subspace mapping for a subspace transformation based on the channel autocorrelation matrix. Additionally, the processing circuitry (120) is configured to generate a subspace transformed channel autocorrelation matrix, at least one subspace transformed channel cross-correlation vector, and a plurality of subspace transformed pilot symbols, by applying the subspace mapping to the channel autocorrelation matrix, the channel cross-correlation vector, and to the plurality of pilot symbols. Additionally, the processing circuitry (120) is configured to generate a plurality of subspace channel estimation filter coefficients based on the subspace transformed channel autocorrelation matrix and the sub-space transformed channel cross-correlation vector. Additionally, the processing circuitry (120) is configured to generate an estimate of at least one channel coefficient of the communication channel based on the subspace transformed pilot symbols and the subspace channel estimation filter coefficients. Furthermore, the channel estimation circuit (100) includes an output interface (150) configured to provide the estimate of the at least one channel coefficient.
Abstract:
Examples provide a determination circuit and apparatus, a mobile transceiver, a communication device, a method for determining, a computer program and a storage to determine a spatial transmission or reception mode. The determination circuit (10) is configured to determine a spatial transmission or reception mode for a mobile transceiver (100). The determination circuit (10) comprises at least one sensor (12) configured to sense attenuating object information, and a control module (14) configured to determine the spatial transmission or reception mode based on the sensed attenuating object information. The control module (14) is configured to control the spatial transmission or reception mode of the mobile transceiver (100).
Abstract:
The disclosure relates to a cluster detection device for detecting clusters in a beam-formed transmission, the cluster detection device comprising: a receiver, configured to receive a radio signal comprising time-frequency resources, wherein the time-frequency resources comprise a plurality of reference signals; a delay profile detector, configured to detect a set of delay profiles based on frequency-direction filtering of the plurality of reference signals; a Doppler profile detector, configured to detect a set of delay-Doppler profiles based on time-direction filtering of the set of delay profiles; and a cluster detection postprocessor, configured to derive a set of cluster parameters from the set of delay-Doppler profiles.
Abstract:
A channel estimation coefficients generator (200) for generating channel estimation coefficients for channel estimation filtering includes: a parameter acquisition unit (205) configured to acquire a first set of input parameters (208) and to acquire a second set of input parameters (209), wherein a time variability of the first set of input parameters (208) is smaller than a time variability of the second set of input parameters (209); a first channel estimation coefficients generator (201) configured to generate a prototype set of channel estimation coefficients (202) based on the first set of input parameters (208); and a second channel estimation coefficients generator (203) configured to generate a refined set of channel estimation coefficients (204) based on the prototype set of channel estimation coefficients (202) and based on the second set of input parameters (209).
Abstract:
Embodiments for providing signaling interference signaling information for UE assistance are generally described herein. In some embodiments, signaling information associated with interfering cells from a network node is received by user equipment (UE). The UE adjusts parameter estimation for mitigating interference based on the received signaling information.
Abstract:
A method (700) for processing resource blocks in a receiver may include receiving (701) a signal comprising transmissions from a plurality of radio cells, wherein received samples of the signal are arranged in a plurality of resource blocks (300); forming (702) a plurality of clusters ({xi,jN}) based on a similarity criterion with respect to the plurality of resource blocks (300); and assigning (703) each resource block of the plurality of resource blocks (300) to one cluster of the plurality of clusters ({xi,jN}).
Abstract:
Examples provide a determination circuit and apparatus, a mobile transceiver, a communication device, a method for determining, a computer program and a storage to determine a spatial transmission or reception mode. The determination circuit (10) is configured to determine a spatial transmission or reception mode for a mobile transceiver (100). The determination circuit (10) comprises at least one sensor (12) configured to sense attenuating object information, and a control module (14) configured to determine the spatial transmission or reception mode based on the sensed attenuating object information. The control module (14) is configured to control the spatial transmission or reception mode of the mobile transceiver (100).
Abstract:
A communication terminal is described comprising a receiver configured to receive pilot signal samples via a plurality of communication channels and to determine an interference matrix which includes, for each pilot signal sample, interference information representing an amount of interference included in the pilot signal sample and a channel estimator configured to determine a channel autocorrelation matrix for the plurality of communication channels and to determine a linear transformation which diagonalizes or triagonalizes the autocorrelation matrix, to transform the interference matrix by the transformation and to reduce the transformed interference matrix by discarding components corresponding to predetermined eigenvectors of the autocorrelation matrix, to determine filter weights for the signal samples based on the reduced interference matrix and to determine channel estimates by filtering the pilot signal samples using the determined filter weights.