Abstract:
This is a support device that prevents, reduces, and delays remodeling of diseased cardiac tissue, and also decreases the impact of such remodeling on collateral tissue is disclosed. The invention further reinforces abnormal tissue regions to prevent over-expansion of the tissue due to increased afterload and excessive wall tension. As a result, the support device prevents phenomenon such as systolic stretch from occurring and propagating. The support structure maintains and restores diastolic compliance, wall motion, and ejection fraction to preserve heart functionality. As such, the support device prevents and treats cardiomyopathy and congestive heart failure.
Abstract:
A collapsible electrode catheter assembly (10) having a delivery system (12) for controlling a catheter guide tube (16) having a catheter distal end assembly (22) thereon. The catheter distal end assembly (22) has an electrode structure (28) on an expanding assembly (34) for enlarging the electrode structure (28) in an expanded condition. A balloon structure (48) is used to expand and contract the expanding assembly (34) when an inflation medium (64) is alternately introduced into and withdrawn from the balloon structure (48).
Abstract:
A surgical device integrating a suction mechanism with a coagulation mechanism is provided for improving lesion creation capabilities. The device comprises an elongate member having an insulative covering attached about means for coagulating soft tissue. Openings through the covering expose regions of the coagulation-causing elements and are coupled to lumens in the elongate member which are routed to a vacuum source. A fluid source to passively transport fluid along the contacted soft tissue surface may be provided in order to push the maximum temperature deeper into tissue.
Abstract:
Devices and methods for harvesting a body structure such as a vessel are provided. Embodiments include devices configured to harvest a vessel from a patient's body, wherein the device includes a mechanism for self-guiding the device over the vessel. Also provided are methods of using the subject devices to harvest a vessel from a patient's body.
Abstract:
Surgical systems for less invasive access to and isolation of an atrial appendage are provided. A suturing grasper compresses soft tissue structures and deploys one or more sutures through complimentary pledget(s) carried by the grasper. The pledgets are reinforced, containing support members that define the profile of the stitch and distribute stresses applied by the stitch, once tightened, over a length of tissue. This hardware may be applicable to other surgical and catheter based applications as well including: compressing soft tissue structures lung resections and volume reductions; gastric procedures associated with reduction in volume, aneurysm repair, vessel ligation, or other procedure involving isolation of, resection of, and reduction of anatomic structures.
Abstract:
Devices, systems and methods are disclosed for repairing soft tissue. The surgical system allows for the creation of tissue repair by grasping, aligning and sewing or fixing tissue. For example, this system may be used for clipping together excessive capsular tissue and reducing the overall capsular volume. The deployment device includes a central grasping mechanism and an outer clip delivery system. The clip embodiments may be single or multi-component (penetration and locking base components) that penetrate tissue layers and deploy or lock to clip the tissue together. An example of the system is used to reduce the joint capsule tissue laxity and reduces the potential for subluxation or dislocation of the joint by either restricting inferior laxity (anterior or posterior) and resolving or eliminating pathologic anterior or posterior translation.
Abstract:
Described are devices and methods for treating degenerative, congestive heart disease and related valvular dysfunction. Percutaneous and minimally invasive surgical tensioning structures offer devices that mitigate changes in the ventricular structure (i.e., remodeling) and deterioration of global left ventricular performance related to tissue damage precipitating from ischemia, acute myocardial infarction (AMI) or other abnormalities. These tensioning structures can be implanted within various major coronary blood-carrying conduit structures (arteries, veins and branching vessels), into or through myocardium, or into engagement with other anatomic structures that impact cardiac output to provide tensile support to the heart muscle wall which resists diastolic filling pressure while simultaneously providing a compressive force to the muscle wall to limit, compensate or provide therapeutic treatment for congestive heart failure and/or to reverse the remodeling that produces an enlarged heart.
Abstract:
A surgical method and apparatus for positioning a diagnostic or therapeutic element within the body. The apparatus may be catheter-based or a probe including a relatively short shaft.