Abstract:
According to an aspect, a display device includes an image display panel and a signal processing unit. The signal processing unit derives a generation signal for a fourth sub-pixel in each of pixels based on an input signal for a first sub-pixel, an input signal for a second sub-pixel, an input signal for a third sub-pixel, and an extension coefficient. The signal processing unit derives a correction value based on a hue of an input color corresponding to a color to be displayed based on the input signal for the first sub-pixel, the input signal for the second sub-pixel, and the input signal for the third sub-pixel. The signal processing unit derives the output signal for the fourth sub-pixel in each of the pixels based on the generation signal for the fourth sub-pixel and the correction value and outputs the output signal to the fourth sub-pixel.
Abstract:
A sensor is provided and includes a first control line; a first signal line; a first auxiliary line; a first detection electrode; a first detection switch connected to the first detection electrode, the first control line and the first signal line; and a first shielding electrode connected to the first auxiliary line, wherein the first shielding electrode is located to overlap the first signal line via an insulating film.
Abstract:
A display apparatus with a touch detection function capable of improving accuracy is provided. The display apparatus includes: a pixel array having a plurality of pixels arranged in a matrix form; and a plurality of signal wires arranged in the pixel array. Here, when an externally-detecting object is detected, a plurality of coils having areas overlapping with each other are formed of a plurality of signal wires (drive electrodes) among the plurality of signal wires, and a magnetic field generated in the plurality of respective coils are superimposed in an overlapped area by supplying a drive signal to the plurality of coils.
Abstract:
According to one embodiment, an imaging display system includes an imaging device and a display device, which operate synchronously with each other. The imaging display system includes a control device. The control device is configured to measure light exposure when the imaging device captures an image and determine whether the measured light exposure is insufficient, and control the display device to decrease a refresh rate and the imaging device to prolong an exposure time, when determined that the light exposure is insufficient. The first scanning time for the imaging device to scan the image and the second scanning time required for the display device to scan the display panel are constant.
Abstract:
According to an aspect, a display device includes: a display area provided to a substrate; a shift register including a plurality of registers coupled in series; and a control circuit that supplies clock pulses to the registers, and that supplies a start pulse to a first register of the shift register to acquire an output from a last register of the shift register, wherein the display area is provided in an area surrounded by the shift register, the control circuit, and wiring that couples the shift register to the control circuit.
Abstract:
A display apparatus with a touch detection function capable of improving accuracy is provided. The display apparatus includes: a pixel array having a plurality of pixels arranged in a matrix form; and a plurality of signal wires arranged in the pixel array. Here, when an externally-detecting object is detected, a plurality of coils having areas overlapping with each other are formed of a plurality of signal wires (drive electrodes) among the plurality of signal wires, and a magnetic field generated in the plurality of respective coils are superimposed in an overlapped area by supplying a drive signal to the plurality of coils.
Abstract:
The display device includes a pixel array that has a plurality of pixels disposed in a matrix form, a plurality of scan lines that are disposed in each row of the pixel array and supply a scan signal to the plurality of pixels disposed in each corresponding row, a plurality of signal lines that are disposed in each column of the pixel array and supply an image signal to the plurality of pixels disposed in each corresponding column, and a plurality of drive electrodes that are disposed in the pixel array and supply a drive signal to the plurality of pixels at a time of displaying an image. A coil that generates a magnetic field is formed using the plurality of drive electrodes at a time of detecting an external proximity object.
Abstract:
According to an aspect, a display device includes an image display panel; a planar light source including a light guide plate and an edge-lit light source that has light sources; and a controller. The controller sets luminance determination blocks by virtually dividing the image display panel in a light-source-arrangement-direction, identifies a luminance determination block with a highest luminance in the incidence direction, among luminance determination blocks at a same position in the light-source-arrangement-direction, identifies a luminance determination block the luminance of which is to be corrected by referring to luminance information of the light sources, and controls a light quantity of each of the light sources in such a manner that luminance of the identified luminance determination block is achieved.
Abstract:
A proximity sensor is arranged with a first electrode input with a first signal, a second electrode input with a second signal different from the first signal, a third electrode arranged closer to the first electrode than the second electrode, and the second signal has a reverse phase of the first signal.
Abstract:
According to one embodiment, a sensor includes a first control line, a first signal line, a first detection switch, a common electrode, a first detection electrode, a first circuit and a second circuit. The common electrode is located above the first control line, the first signal line and the first detection switch, opposed to the first control line, the first signal line and the first detection switch. The first detection electrode is located above the common electrode. The first circuit and the second circuit are located under the common electrode, and are opposed to the common electrode.