Abstract:
According to an aspect, a semi-transmissive liquid crystal display device includes a plurality of pixels arranged in a matrix, a plurality of reflective electrodes, a counter electrode facing the reflective electrode, and a liquid crystal layer. The reflective electrodes are provided for each of the pixels, and each of them includes a plurality of electrodes, with a combination of the areas of which area coverage modulation is performed by using n bits. The electrodes are configured such that a ratio of the sum of the perimeter(s) of electrode(s) corresponding to each bit of the n bits satisfies 1:2: . . . :2n−1. The liquid crystal layer is provided between the reflective electrode and the counter electrode. The semi-transmissive liquid crystal display device is configured to carry out reflective display using the reflective electrode and carry out transmissive display using at least a space of the reflective electrode between the pixels.
Abstract:
According to an aspect, a liquid crystal display device includes a first electrode having a plurality of electrode base portions that extend in a first direction; a plurality of first comb-shaped portions that protrude from each of the plurality of electrode base portions in a second direction; and a plurality of second comb-shaped portions that protrude from each of the plurality of electrode base portions in an opposite direction to the second direction. Front edges of the first comb-shaped portions and the second comb-shaped portions that extend from the adjacent electrode base portions face each other with a gap therebetween, respectively. Transmission ineffective areas are formed at portions between the front edges facing each other, respectively, and not continuously aligned.
Abstract:
A display capable of obtaining high luminance in white display and an electronic unit are provided. The display includes: a reflective display panel; and an optical laminate disposed on the display panel, in which the optical laminate includes a plurality of anisotropic scattering films, and transmittances in a scattering central axis direction of two or more films of the plurality of anisotropic scattering films are different from each other.
Abstract:
A liquid crystal display device includes a first substrate provided with a reflective electrode, a second substrate provided with a transparent electrode oppositely disposed to the reflective electrode, a liquid crystal layer disposed between the first second substrates, a polarization plate oppositely disposed to the first substrate with an interposition of the second substrate, and an anisotropic scattering member disposed between the second substrate and the polarization plate. A main view angle direction is set as a predetermined direction intersecting a display surface. The anisotropic scattering member has a scattering center and scatters light traveling along a scattering axis direction which is a direction having a predetermined angle range centered around the scattering center. The scattering axis direction coincides with the main view angle direction.
Abstract:
According to an aspect, a semi-transmissive liquid crystal display device includes a plurality of pixels arranged in a matrix, a plurality of reflective electrodes, a counter electrode facing the reflective electrode, and a liquid crystal layer. The reflective electrodes are provided for each of the pixels, and each of them includes a plurality of electrodes, with a combination of the areas of which area coverage modulation is performed by using n bits. The electrodes are configured such that a ratio of the sum of the perimeter(s) of electrode(s) corresponding to each bit of the n bits satisfies 1:2: . . . :2n-1. The liquid crystal layer is provided between the reflective electrode and the counter electrode. The semi-transmissive liquid crystal display device is configured to carry out reflective display using the reflective electrode and carry out transmissive display using at least a space of the reflective electrode between the pixels.
Abstract:
A liquid crystal display which is a reflective liquid crystal display includes: a front substrate; a rear substrate; and a liquid crystal material layer disposed between the front substrate and the rear substrate, wherein an optical design is performed such that an extreme value of a liquid crystal applied voltage-reflectance curve in a state of being observed from a normal observing direction is shifted further to a lower voltage side than an extreme value of a liquid crystal applied voltage-reflectance curve in a state of being observed from a direction deviated from the normal observing direction, and wherein an anisotropic scatterer disposed such that a direction where scattering characteristics are the maximum is aligned with the normal observing direction is provided on the front substrate side.
Abstract:
According to an aspect, a liquid crystal display device includes: a first substrate and a second substrate that face each other; a liquid crystal layer provided between the first substrate and the second substrate; and a first electrode and a second electrode provided between the first substrate and the liquid crystal layer. The first electrode includes: at least an electrode base portion that extends in a first direction; and a plurality of comb-shaped portions that protrude from the electrode base portion at a fixed distance away from each other, and extend in a second direction different from the first direction. Each comb-shaped portion has a coupling portion layered on or under the electrode base portion.
Abstract:
According to an aspect, a display device includes a display panel and a plurality of memory circuits. The display panel includes a plurality of pixels each including a plurality of sub-pixel electrodes arranged in a matrix, and the display panel is divided into at least a first region and a second region in which at least one of the predetermined maximum number of displayable gradations and maximum resolution is different from that of the first region. The memory circuits are located under the sub-pixel electrodes and each of the memory circuits stores therein pixel potential corresponding to gradation to be applied to at least one of the sub-pixel electrodes. The arrangement of the sub-pixel electrodes is the same in the first region and the second region of the display panel.
Abstract:
According to one embodiment, a display device includes a driver, a first pixel circuit disposed apart from the driver in plan view but electrically connected to the driver, a second pixel circuit separated further from the driver than the first pixel circuit in plan view but electrically connected to the driver, a first pixel electrode overlapping the driver in plan view, a second pixel electrode overlapping the first pixel circuit in plan view, a first relay line electrically connecting the first pixel circuit and the first pixel electrode to each other, and a second relay line electrically connecting the second pixel circuit and the second pixel electrode to each other.
Abstract:
According to one embodiment, a display device includes a driver, a pixel circuit disposed to be apart from the driver in a plan view and to be electrically connected to the driver, a first pixel electrode disposed to overlap the pixel circuit in a plan view and to be electrically connected to the pixel circuit, a second pixel electrode disposed to overlap the driver in a plan view and to be closer to an outer edge of a display area than the first pixel electrode, and a relay line disposed between the pixel circuit and the first pixel electrode and between the driver and the second pixel electrode, the relay line electrically connecting the first pixel electrode and the second pixel electrode.