Abstract:
The object of the present invention is to make it possible to form an LTPS TFT and an oxide semiconductor TFT on the same substrate. A display device includes a substrate having a display region in which pixels are formed. The pixel includes a first TFT using an oxide semiconductor 109. An oxide film 110 as an insulating material is formed on the oxide semiconductor 109. A gate electrode 111 is formed on the oxide film 110. A first electrode 115 is connected to a drain of the first TFT via a first through hole formed in the oxide film 110. A second electrode 116 is connected to a source of the first TFT via a second through hole formed in the oxide film 110.
Abstract:
A filling material is provided in an interval part between a first substrate provided with a light emitting device in a pixel and a second substrate provided with a color filter layer corresponding to each pixel which is provided to face each other and a protruding part is provided in the interval part. The protruding part is provided separated along one edge of each pixel. An end part in a length direction of the protruding part is formed in a cone or streamlined shape. In addition, the protruding part is formed from a material having light absorbing properties such as carbon black so as to provide light shielding properties. By adopting this structure, it is possible to solve a problem of mixing colors produced between pixels. It is possible to ensure that the flow of the filling material provided between the first substrate and the second substrate is not obstructed.
Abstract:
A display device includes a first substrate, pixel electrodes located in correspondence with pixels above the first substrate, a first partition covering ends of a group of the pixel electrodes, a second partition covering ends of another group of the pixel electrodes, the second partition being lower than the first partition, a solid filler located above the first partition and the second partition, and a second substrate facing the first substrate, the second substrate being away from the first substrate by a distance kept by the first partition, the second partition and the filler.
Abstract:
A filling material is provided in an interval part between a first substrate provided with a light emitting device in a pixel and a second substrate provided with a color filter layer corresponding to each pixel which is provided to face each other and a protruding part is provided in the interval part. The protruding part is provided separated along one edge of each pixel. An end part in a length direction of the protruding part is formed in a cone or streamlined shape. In addition, the protruding part is formed from a material having light absorbing properties such as carbon black so as to provide light shielding properties. By adopting this structure, it is possible to solve a problem of mixing colors produced between pixels. It is possible to ensure that the flow of the filling material provided between the first substrate and the second substrate is not obstructed.
Abstract:
A space between a lower substrate and an upper substrate including an organic EL light-emitting layer which includes a display region for displaying an image is filled by a dam material which is applied to enclose an exterior edge of the display region and a filling material which is dripped into the interior side of the dam material. The dam material is an epoxy resin with a comparatively high viscosity before hardening and the filling material is an epoxy resin with a comparatively low viscosity before hardening. A substrate concave part is formed between the display region on a surface of the lower substrate and a coating region of the dam material.
Abstract:
The object of the present invention is to make it possible to form an LTPS TFT and an oxide semiconductor TFT on the same substrate. A display device includes a substrate having a display region in which pixels are formed. The pixel includes a first TFT using an oxide semiconductor 109. An oxide film 110 as an insulating material is formed on the oxide semiconductor 109. A gate electrode 111 is formed on the oxide film 110. A first electrode 115 is connected to a drain of the first TFT via a first through hole formed in the oxide film 110. A second electrode 116 is connected to a source of the first TFT via a second through hole formed in the oxide film 110.
Abstract:
An EL display device includes a TFT substrate on which a scanning line extends in a first direction, a video signal line extends in a second direction, and an EL element having an anode, a luminous layer and a cathode. A protective film covers the scanning line, the video signal line and the EL element. A touch panel detection electrode is disposed above the protective film, and connected to a wiring which is disposed under the protective film via a through hole of the protective film. The touch panel detection electrode has an angle to intersect with the video signal line.
Abstract:
The object of the present invention is to make it possible to form an LIPS TFT and an oxide semiconductor TFT on the same substrate. A display device includes a substrate having a display region in which pixels are formed. The pixel includes a first TFT using an oxide semiconductor 109. An oxide film 110 as an insulating material is formed on the oxide semiconductor 109. A gate electrode 111 is formed on the oxide film 110. A first electrode 115 is connected to a drain of the first TFT via a first through hole formed in the oxide film 110. A second electrode 116 is connected to a source of the first TFT via a second through hole formed in the oxide film 110.
Abstract:
A sealing substrate is arranged to oppositely face an element substrate or which organic EL layers are formed in a matrix array with a sealing material sandwiched therebetween. A gel-state desiccant is filled in an inner space surrounded by the element substrate, the sealing substrate and the sealing material. Since the gel-state, desiccant is in a gel state, the gel-state desiccant is flexibly filled in the inner space of the organic EL display device thus completely eliminating a gap. Since the inner space is filled with the gel-state desiccant, moisture hardly intrudes into the inner space from the outside and, at the same time, a mechanical strength of the organic EL display device is also enhanced.
Abstract:
A display device includes a first substrate that is provided with a display element in a display region, a second substrate that faces the first substrate, and a sealant that bonds the first substrate and the second substrate to each other in a region surrounding the periphery of the display region in a plan view, in which each of the first substrate and the second substrate has a rectangular shape, in which at least one of the first substrate and the second substrate has a corner portion and a recess formed at a position which is close to the corner portion and overlaps at least a part of the region in which the sealant is disposed, and in which the sealant is provided to be in contact with at least a surface far from the display region among inner surfaces of the recess.