Abstract:
An apparatus for controllably moving an implement is provided. The implement is connected to a work machine and is movable between first and second implement positions in response to operation of a hydraulic actuator. The apparatus includes a joystick with first and second positions and a neutral position. The joystick is normally biased in a neutral position and is movable between the first and second positions. The apparatus senses the position of the joystick and responsively generates a joystick position signal. The joystick maintained at the first and second detent positions in response to manual movement of the joystick to the respective first and second detent positions. The joystick is released from the detent position in response to receiving a release detent signal. The apparatus senses the position of the work implement with respect to the work machine. The apparatus provides hydraulic fluid flow to the hydraulic actuator in response to a magnitude of an electrical valve signal. The apparatus receives the joystick position signal, responsively delivers the electrical valve signal. The magnitude of the electrical valve signal is proportional to the joystick position signal. The apparatus compares the implement position signal with a first detent position and a second detent position and responsively produces the release detent signal.
Abstract:
A method for controllably moving an implement is provided. The implement is connected to a work machine and is movable between first and second implement positions in response to operation of a hydraulic actuator. The method includes a joystick with first and second positions and a neutral position. The joystick is normally biased in a neutral position and is movable between the first and second positions. The method senses the position of the joystick and responsively generates a joystick position signals The joystick maintained at the first and second detent positions in response to manual movement of the joystick to the respective first and second detent positions. The joystick is released from the detent position in response to receiving a release detent signal. The method senses the position of the work implement with respect to the work machine. The method provides hydraulic fluid flow to the hydraulic actuator in response to a magnitude of an electrical valve signal. The method receives the joystick position signal, responsively delivers the electrical valve signal. The magnitude of the electrical valve signal is proportional to the joystick position signal. The method compares the implement position signal with a first detent position and a second detent position and responsively produces the release detent signal.
Abstract:
Construction vehicles of the type having a pair of lift arms extending from the frame to support a work implement, have generally been restricted to operating one specific tool. The attempt to combine the operation of several different work implements has been met with severe functional restrictions since some work implements have specific requirements not found in the operation of others. In order to provide a lift arm linkage arrangement that incorporates the functional requirements necessary to operate a plurality of work implements while maintaining a simple, yet efficient construction, an electronic controller has been included in the design. The electronic controller includes a plurality of sensors that are operatively associated with the lift and tilt linkage of the lift arm arrangement. The sensors enable the electronic controller to constantly monitor the current position of the lift arms and the work implement and compare them with a programmed sequence of movements. The electronic controller is further able to automatically adjust the position of the lift arms and the work implement in accordance with the programmed sequence.
Abstract:
A method and apparatus for determining a value of torque at a desired location on a machine. The method and apparatus includes choosing the desired location, determining an operating condition relevant to the desired location, determining a plurality of parameters of the machine, and determining a value of torque at the desired location as a function of the operating condition and the plurality of parameters.
Abstract:
In one aspect of this invention, a fluid actuated clutch is disclosed. The fluid actuated clutch is operatively connected to a control valve that is actuated by an electronic controller that receives a signal from an input mechanism, including a value for speed of an engine drive and a value of output speed for a torque converter. The method includes detecting a torque converter ratio which is the output speed of the torque converter divided by the engine drive speed, and detecting if there is at least one torque converter decrease exceeding a predetermined level and preferably detecting if there are at least two consecutive decreases in the torque converter ratio with at least one of the torque converter decreases exceeding a predetermined minimum level. This condition represents the end-of-fill point for the fluid actuated clutch.
Abstract:
A method for controlling automatically controlling the shifting of a transmission when operating the higher speeds so that a downshift is performed before a directional shift is made. A controller receives a directional signal, a mode signal, a transmission output speed signal. The signals and a shift sequence table is used to shift the transmission when the machine has reached an "on speed" point. The controller will perform a shift after a predetermined time without the machine reaching the "on speed" point.
Abstract:
A control system and method is provided for changing the shiftpoints of a transmission for part throttle shifting. A input section delivers a actual gear signal, a engine speed signal and a torque converter output speed signal A controller receives the input signals and varies the transmission shiftpoints relative to the received signals. The controller also delivers signals to the transmission to upshift, downshift or that no shift is necessary.
Abstract:
An anti-spin apparatus for a machine is disclosed. The machine is articulated and has at least one axle set with at least two driven wheels. The anti-spin apparatus includes braking mechanisms which controllably apply braking forces to each of the driven wheels. A controller produces a slip signal having a value responsive to the difference in rotational velocity between the wheels of the axle set. A transducer produces an articulation signal having a value responsive to the angle of articulation of the machine. Further, a microprocessor receives the slip signal and the articulation signal, and produces a braking control signal. One of the braking mechanisms receives the braking control signal and responsively applies the braking forces to the faster rotating wheel.
Abstract:
An implement control system is provided for controllably raising and lowering an implement relative to a work vehicle. The implement is pivotally connected to the work vehicle and movable between maximum raised and lowered positions in response to the extension and retraction of a hydraulic cylinder. The implement control system is operative for controllably connecting the hydraulic cylinder to a hydraulic accumulator as the implement reaches its desired position, thereby slowing movement of the implement in a smooth manner.