摘要:
A flat panel display capable of lowering an on-current of a driving thin film transistor (TFT), maintaining high switching properties of a switching TFT, maintaining uniform brightness using the driving TFT, and maintaining a life span of a light emitting device while the same voltages are applied to the switching TFT and the driving TFT without changing a size of an active layer. The flat panel display includes a light emitting device, a switching thin film transistor including a semiconductor active layer having a channel area for transferring a data signal to the light emitting device, and a driving thin film transistor including a semiconductor active layer having a channel area for driving the light emitting device. A predetermined amount of current flows through the light emitting device according to the data signal. The channel area of the switching thin film transistor has crystal grains with at least one of different sized or different shaped crystal grains than the crystal grains in the channel area of the driving thin film transistor.
摘要:
Disclosed is a flat panel display capable of improving a white balance by making channel regions of transistors of R, G, and B unit pixels with different current mobilities. The flat panel display includes a plurality of pixels, each of the pixels including R, G and B unit pixels to embody red (R), green (G), and blue (B) colors, respectively, and each of the unit pixels including at least one transistor. Channel layers of the transistors of at least two unit pixels among the R, G, and B unit pixels have different current mobilities from one another. The R, G, B unit pixels includes transistors and the transistor of at least one unit pixel among the R, G, and B unit pixels includes the channel layer made of silicon layers of different film qualities.
摘要:
A flat panel display lowering an on-current of a driving thin film transistor (TFT), maintaining high switching properties of a switching TFT, maintaining uniform brightness using the driving TFT, and maintaining a life span of a light emitting device while the same voltages are applied to the switching TFT and the driving TFT without changing a size of an active layer. The flat panel display has a light emitting device, a switching thin film transistor including a semiconductor active layer having at least a channel area for transferring a data signal to the light emitting device, and a driving thin film transistor including a semiconductor active layer having at least a channel area for driving the light emitting device so that a predetermined current flows through the light emitting device according to the data signal, the channel areas of the switching TFT and the driving TFT having different directions of current flow.
摘要:
A flat panel display capable of lowering an on-current of a driving thin film transistor (TFT), maintaining high switching properties of a switching TFT, maintaining uniform brightness using the driving TFT, and maintaining a life span of a light emitting device while the same voltages are applied to the switching TFT and the driving TFT without changing a size of an active layer. The flat panel display includes a light emitting device, a switching thin film transistor including a semiconductor active layer having a channel area for transferring a data signal to the light emitting device, and a driving thin film transistor including a semiconductor active layer having a channel area for driving the light emitting device. A predetermined amount of current flows through the light emitting device according to the data signal. The channel area of the switching thin film transistor has crystal grains with at least one of different sized or different shaped crystal grains than the crystal grains in the channel area of the driving thin film transistor.
摘要:
A flat panel display capable of lowering an on-current of a driving thin film transistor (TFT), maintaining high switching properties of a switching TFT, maintaining uniform brightness using the driving TFT, and maintaining a life span of a light emitting device while the same voltages are applied to the switching TFT and the driving TFT without changing a size of an active layer. The flat panel display includes a light emitting device, a switching thin film transistor including a semiconductor active layer having a channel area for transferring a data signal to the light emitting device, and a driving thin film transistor including a semiconductor active layer having a channel area for driving the light emitting device. A predetermined amount of current flows through the light emitting device according to the data signal. The channel area of the switching thin film transistor has crystal grains with at least one of different sized or different shaped crystal grains than the crystal grains in the channel area of the driving thin film transistor.
摘要:
Disclosed is a flat panel display capable of improving a white balance by making channel regions of transistors of R, G, and B unit pixels with different current mobilities. The flat panel display includes a plurality of pixels, each of the pixels including R, G and B unit pixels to embody red (R), green (G), and blue (B) colors, respectively, and each of the unit pixels including at least one transistor. Channel layers of the transistors of at least two unit pixels among the R, G, and B unit pixels have different current mobilities from one another. The R, G, B unit pixels includes transistors and the transistor of at least one unit pixel among the R, G, and B unit pixels includes the channel layer made of silicon layers of different film qualities.
摘要:
Disclosed is a flat panel display capable of improving a white balance by making channel regions of transistors of R, G and B unit pixels with different current mobilities. The flat panel display includes a plurality of pixels, each of the pixels including R, G and B unit pixels to embody red (R), green (G) and blue (B) colors, respectively, and each of the unit pixels including at least one transistor. Channel layers of the transistors of at least two unit pixels among the R, G and B unit pixels have different current mobilities from one another. The R, G, B unit pixels includes transistors and the transistor of at least one unit pixel among the R, G and B unit pixels includes the channel layer made of silicon layers of different film qualities.
摘要:
Disclosed is a flat panel display capable of enhancing a white balance by making a doping concentration or shape and size of drain offset regions of driving transistors different, in R, G and B unit pixels of each pixel. A flat panel display, comprises a plurality of pixels, where each of pixels including R, G and B unit pixels to embody red (R), green (G) and blue (B) colors, respectively. Each of the unit pixels includes a transistor with source/drain regions. Transistors of at least two unit pixels of the R, G and B unit pixels have drain regions of different geometric structures. In each unit pixel, a resistance value of the drain region of the transistor to drive a light-emitting device having the highest luminous efficiency among the transistors is higher than that of the drain region of a transistor to drive the light-emitting device having a relatively low luminous efficiency.
摘要:
A flexible flat panel display where nanoparticles are used for the active layer of the TFTs and the substrate is flexible and can be manufactured at room temperature, a flat panel display device having the same, a method of manufacturing a TFT, a method of manufacturing a flat panel display device, and a method of manufacturing a donor sheet. In making the TFTs in the display, a donor sheet is used to transfer the nanoparticles from the sheet to the substrate. The thin film transistor is placed on a substrate and includes a channel region which has at least one P-type or N-type nanoparticle arranged in a lengthwise direction, wherein the lengthwise direction of the P-type or N-type nanoparticles is parallel to a P-type or an N-type nanoparticle line partitioned off on the substrate.
摘要:
A flexible flat panel display where nanoparticles are used for an active layer and the substrate is a flexible plastic, a method of manufacturing the same, a method of manufacturing a thin film transistor (TFT) using the donor sheet, and a method of manufacturing a flat panel display device using the donor sheet. In making the TFTs in the display, a donor sheet is used to transfer the nanoparticles from the sheet to the substrate. The donor sheet can be manufactured at room temperature. The donor sheet has a base film, and a transfer layer being disposed at one side of the base film and transferable, wherein the transfer layer has a plurality of nanoparticles which are arranged to be approximately parallel to one another.