摘要:
A nano-carbon material field emission cathode plate is prepared by an oxidation-reduction reaction, which includes immersing a substrate having a first metal layer thereon in a solution of a second metal salt with a nano-carbon material dispersed therein. A difference between the two standard redox potentials of the first metal and the second metal is so great that ions of the second metal in the solution are reduced to elemental metal while the first metal is oxidized, and thus a layer of the second metal is formed on the first metal layer with the nano-carbon material partially embedded in the second metal layer.
摘要:
A method for surface treatment is disclosed. The method is achieved by forming a MgO film on a metal surface through anode processing of Mg or Mg alloy in an alkaline solution. The alkaline solution includes a hydroxide, a thickening agent, and a film adjusting agent. As the method is performed, the target object is immersed in the alkaline solution, and the target object is connected to an anode with an average electric current density of 1˜5 A/dm, at a temperature of 0˜30° C., and within a time period of 10˜120 minutes to form a film of 5˜25 μm. The forming rate of the film of the method of the present invention is fast, and the formed film is of little stress.
摘要:
A method for manufacturing graphene is disclosed, which comprises the following steps: putting graphite material and an organic solvent, a surfactant, or a combination thereof in a reaction tank and introducing a supercritical fluid in the reaction tank to allow the organic solvent, the surfactant, or the combination thereof to dissolve in the supercritical fluid and to permeate into the graphite material; and removing the supercritical fluid by depressurization to form graphene. The method of the present invention has simple steps and reduced consumption of manufacturing time, and also can promote the quality of the resultant graphene in large-scale manufacturing.
摘要:
A graphite-vinyl ester resin composite conducting plate is prepared in the present invention. The conducting plate can be used as a bipolar plate for a fuel cell, counter electrode for dye-sensitized solar cell and electrode of vanadium redox battery. The conducting plate is prepared as follows: a) compounding vinyl ester resin and graphite powder to form a bulk molding compound (BMC) material, the graphite powder content ranging from 70 wt % to 95 wt % based on the total weight of the graphite powder and vinyl ester, wherein 0.01-15 wt % functionalized graphene, based on the weight of the vinyl ester resin, are added during the compounding; b) molding the BMC material from step a) to form a conducting plate having a desired shaped at 80-250° C. and 500-4000 psi.
摘要:
The invention discloses a carbon nanotube device, comprising a substrate, a catalyst layer formed on the substrate, a porous capping layer formed on the catalyst layer, and a carbon nanotube formed on the porous capping layer. A wafer for growing a carbon nanotube comprises a substrate, a catalyst layer formed on the substrate, and a porous capping layer formed on the catalyst layer, with carbon nanotube growning on the porous capping layer.
摘要:
The invention discloses a method for fabricating a carbon nanotube, and the method comprises the following steps: providing a substrate; forming a catalyst layer on the substrate; forming a porous capping layer on the catalyst layer to finish a wafer; forming the carbon nanotube on the wafer. By the porous capping layer, the well-aligned carbon nanotube can grow on the wafer through thermal CVD.
摘要:
A method for manufacturing graphene is disclosed, which comprises the following steps: putting graphite material and an organic solvent, a surfactant, or a combination thereof in a reaction tank and introducing a supercritical fluid in the reaction tank to allow the organic solvent, the surfactant, or the combination thereof to dissolve in the supercritical fluid and to permeate into the graphite material; and removing the supercritical fluid by depressurization to form graphene. The method of the present invention has simple steps and reduced consumption of manufacturing time, and also can promote the quality of the resultant graphene in large-scale manufacturing.
摘要:
The present invention relates to a low-temperature method for forming carbon nanotubes, which mainly includes preparing a co-catalyst of composite metal particles on a substrate, and growing carbon nanotubes on the substrate by a thermal CVD process at 400° C. The present invention uses a non-isothermal deposition (NITD) and a metal chemical substitution reaction to prepare the co-catalyst particles on the substrate.
摘要:
A method for depositing a copper layer on a substrate is disclosed. The method is achieved by heating a plating solution located between a heating device and a target substrate. Through the process illustrated above, metal nano-particles come out from the plating solution and deposit on a substrate with high aspect ratio. Surfactant can be selectively added for obtaining ultra-thin continuous film, void-free copper connectors. Furthermore, a copper film would achieve a preferred (111) crystallization orientation.
摘要:
A method for metallizing a surface of substrates is disclosed. Particularly, nonhomogeneous heating deposition occurs by setting the surface and the heater in an electroless plating reactor at different temperatures. Moreover, an adjustable gap is defined between the substrate being metalized and heating source board. The deposit can securely adhere to the surface of the substrate for gap creates and activates metallic nanoparticles, which possess higher activity and bonding strength to the surface. Accordingly, metallization of the surface of the substrate can be easily achieved without using precious metals and carcinogenic materials.