Abstract:
H.sub.2 S is removed from a fluid stream by contacting the stream with an aqueous solution having at least two components: an effective amount of an iron (III) chelate to oxidize H.sub.2 S to sulfur and, an amount of a water soluble anionic polymer containing sulfonic acid groups, carboxyl groups or mixtures thereof which is effective to stabilize the chelate. During the removal process the iron chelate is reduced to iron(II) chelate, and sulfur particles are produced.
Abstract:
Ion-exchangeable phosphate glass compositions containing in mole percent from about 50 to 70% P.sub.2 O.sub.5, from about 5 to 30% Li.sub.2 O, from about 5 to 25% MO, where M is selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Zn, and about 5 to 30% X.sub.2 O.sub.3, where X is selected from the group consisting of Al, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu are provided. In another aspect, the phosphate glass compositions of the present invention also contain in mole percent up to 10% R.sub.2 O, where R is selected from the group consisting of Na, K, Rb and Cs. Solarization inhibitors and minor amounts of anhydrous fluorides and chlorides are also included in some embodiments. Optical quality phosphate glass articles formed of the phosphate glass compositions of the present invention are readily ion- exchangeable when contacted with certain salts. Optical quality phosphate glass articles are also provided having good thermal shock resistance. These glass articles have an inner tension region and an outer compressive surface layer formed using an ion exchange process. In some embodiments, laser rods and similar active optical elements are formed from the strengthened phosphate glass articles of the present invention where the optical elements are doped with an amount of a suitable dopant effective for laser activity.
Abstract:
A sensitized laser glass which includes a primary lasing dopant and auxiliary dopants which absorb in regions of the flashlamp emission spectrum away from the absorption bans of the primary dopant and transfer the energy absorbed to the primary dopant, thus improving the efficiency and sensitivity of the laser glass. The auxiliary dopant comprises the combination of cerium and chromium as Ce.sub.2 O.sub.3 and Cr.sub.2 O.sub.3 and the primary dopant is a rare earth metal, preferably neodymium or erbium as Nd.sub.2 O.sub.3 or Er.sub.2 O.sub.3. Th auxiliary dopant consists essentially of 0.1 to 5% by weight Ce.sub.2 O.sub.3 and 0.025 to 0.1% by weight Cr.sub.2 O.sub.3, however the preferred concentration of the auxiliary dopant is 2 to 4% by weight Ce.sub.2 O.sub.3 plus 0.03 to 0.07% by weight Cr.sub.2 O.sub.3. The experimental data establishes that such auxiliary dopants are particularly suitable for phosphate laser glasses.
Abstract translation:敏化激光玻璃,其包括初级激光掺杂剂和辅助掺杂剂,其在闪光发射光谱的区域中吸收远离主要掺杂剂的吸收抑制并将吸收的能量转移到主要掺杂剂,从而提高激光器的效率和灵敏度 玻璃。 辅助掺杂剂包括作为Ce 2 O 3和Cr 2 O 3的铈和铬的组合,并且主要掺杂剂是稀土金属,优选作为Nd 2 O 3或Er 2 O 3的钕或铒。 辅助掺杂剂基本上由0.1至5重量%的Ce 2 O 3和0.025至0.1重量%的Cr 2 O 3组成,然而辅助掺杂剂的优选浓度为2至4重量%的Ce 2 O 3加0.03至0.07重量%的Cr 2 O 3。 实验数据表明,这种辅助掺杂剂特别适用于磷酸盐激光眼镜。
Abstract:
A simplified, relatively inexpensive laser device, wherein the laser elements are fixed in a body exoskeleton of electrical insulating material having a low coefficient of thermal expansion. The preferred embodiment includes a shotgun type laser filter having parallel bores which receive the laser flashlamp and laser rod in fixed relation in a body chamber. The reflector surrounds the laser filter and retains the filter within the body chamber. In the preferred method of this invention, several controlled lasing pulses are generated with each illumination pulse of the flashlamp, substantially increasing the efficiency of the laser device. The number of pulses is generally controlled by increasing the voltage to the flashlamp. The rapid multiple lasing pulses generate an elongated plasma in a fluid medium, such as the vitreous fluid body of an eye which makes the laser device extremely efficient for treating glaucoma and other medical treatments.
Abstract:
Disclosed is a system and method for a non-invasive method for determining the presence or absence of cancerous cells in the skin and deeper tissue levels. The system includes a portable handheld laser coupled with a spectroscopy system to produce real-time material analysis of the presence of cancerous cells without sample preparation. The system focuses a high peak power laser pulse onto a targeted material to produce a laser spark or micro-plasma. Elemental line spectra emission is created, collected and analyzed by a spectrophotometer. The line spectra emission data is quickly displayed on a laptop computer. “Eye-safe” Class I lasers provide for practical in-situ laser plasma spectroscopy applications such as detection of cancerous skin tissues. The emission data can be used to detect changes in the levels of a series of elements that are associated with cancerous cells versus normal skin cells. The system also finds use during excisional biopsy procedures to ensure that all cancerous cells have been removed.
Abstract:
A method of transferring energy in an optical fiber (12) from the fiber's cladding element (16) of the fiber's core element (14) is disclosed. The core element (14) includes an active gain component and an energy migration component, and the cladding element (16), which surrounds the core element (14), includes the energy migration component. The method includes the steps of providing a pump (22) for producting energy and optically coupling the pump with the cladding element (16), such that the energy is absorbed and stored in the cladding element (16) by its energy migration component. A further step includes the active gain component in the core element (14) lasing or providing gain, when the transferring of energy from the cladding element's energy migration component to the core element's energy migration component takes place.
Abstract:
An optical fiber laser structure and system are disclosed. The fiber laser structure includes a core, an inner cladding, and an outer cladding. The core has a first and second end and includes a combination of ytterbium and erbium as a first active gain component. The inner cladding, having a length defined between the first and second ends, surrounds the core. The inner cladding includes neodymium as a second active gain component that is different from the first active gain component. The system includes a pumping source coupled to the inner cladding to provide energy to the neodymium in the inner cladding. Upon being pumped, the neodymium achieves amplified spontaneous emission in the inner cladding along the length between the first and second ends. As a result, energy is efficiently transferred from the neodymium to the combination of the ytterbium and erbium in the core thereby providing laser activity at an eye-safe laser wavelength of 1535 nanometers.
Abstract:
Ion-exchangeable phosphate glass compositions containing in mole percent from about 50 to 70% P.sub.2 O.sub.5, from about 5 to 30 % Li.sub.2 O, from about 5 to 25% MO, where M is selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Zn, and about 5 to 30% X.sub.2 O.sub.3, where X is selected from the group consisting of Al, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu are provided. In another aspect, the phosphate glass compositions of the present invention also contain in mole percent up to 10% R.sub.2 O, where R is selected from the group consisting of Na, K, Rb and Cs. Solarization inhibitors and minor amounts of anhydrous fluorides and chlorides are also included in some embodiments. Optical quality phosphate glass articles formed of the phosphate glass compositions of the present invention are readily ion- exchangeable when contacted with certain salts. Optical quality phosphate glass articles are also provided having good thermal shock resistance. These glass articles have an inner tension region and an outer compressive surface layer formed using an ion exchange process. In some embodiments, laser rods and similar active optical elements are formed from the strengthened phosphate glass articles of the present invention where the optical elements are doped with an amount of a suitable dopant effective for laser activity.
Abstract:
A method that employs a novel combination of conventional fabrication techniques provides a ceramic short-resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The method allows thinner and more flexible ceramic capacitors to be made. The method includes forming a first thin metal layer on a substrate; depositing a thin, ceramic dielectric layer over the metal layer; depositing a second thin metal layer over the dielectric layer to form a capacitor exhibiting a benign failure mode; and separating the capacitor from the substrate. The method may also include bending the resulting capacitor into a serpentine arrangement with gaps between the layers that allow venting of evaporated electrode material in the event of a benign failure.