Abstract:
A pixel array in an image sensor, the image sensor and a digital camera including the image sensor. The image sensor includes a pixel array with colored pixels and unfiltered (color filter-free) pixels. Each unfiltered pixel occupies one or more array locations. The colored pixels may be arranged in uninterrupted rows and columns with unfiltered pixels disposed between the uninterrupted rows and columns. The image sensor may in CMOS with the unfiltered pixels reducing low-light noise and improving low-light sensitivity.
Abstract:
The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
Abstract:
A global shutter compatible pixel circuit comprising a reset gate (RG) transistor is provided in which a dynamic voltage is applied to the drain of the reset gate transistor in order to reduce a floating diffusion (FD) leakage therethrough during signal hold time. The drain voltage of the reset gate transistor is held at a lower voltage than a circuit supply voltage to minimize the off-state leakage through the RG transistor, thus reducing the change in the voltage at the floating diffusion during the signal hold time. In addition, a design structure for such a circuit providing a dynamic voltage to the drain of a reset gate of a pixel circuit is also provided.
Abstract:
The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
Abstract:
A structure (and method for forming the same) for an image sensor cell. The method includes providing a semiconductor substrate. Then, a charge collection well is formed in the semiconductor substrate, the charge collection well comprising dopants of a first doping polarity. Next, a surface pinning layer is formed in the charge collection well, the surface pinning layer comprising dopants of a second doping polarity opposite to the first doping polarity. Then, an electrically conductive push electrode is formed in direct physical contact with the surface pinning layer but not in direct physical contact with the charge collection well. Then, a transfer transistor is formed on the semiconductor substrate. The transfer transistor includes first and second source/drain regions and a channel region. The first and second source/drain regions comprise dopants of the first doping polarity. The first source/drain region is in direct physical contact with the charge collection well.
Abstract:
A pixel sensor structure, method of manufacture and method of operating. Disclosed is a buffer pixel cell comprising a barrier region for preventing stray charge carriers from arriving at a dark current correction pixel cell. The buffer pixel cell is located in the vicinity of the dark current correction pixel cell and the buffer pixel cell resembles an active pixel cell. Thus, an environment surrounding the dark current correction pixel cell is similar to the environment surrounding an active pixel cell.
Abstract:
A pixel sensor cell including a column circuit, a design structure for fabricating the pixel sensor cell including the column circuit and a method for operating the pixel sensor cell including the column circuit are predicated upon the measurement of multiple reference data point and signal data point pairs from a floating diffusion at a variable capacitance. The variable capacitance is provided by excluding or including a transfer gate transistor capacitance in addition to a floating diffusion capacitance. Such a variable capacitance provides variable dynamic ranges for the pixel sensor cell including the column circuit.
Abstract:
A method for manufacturing a pixel sensor cell that includes a photosensitive element having a non-laterally disposed charge collection region. The method includes forming a trench recess in a substrate of a first conductivity type material, and filling the trench recess with a material having second conductivity type material. The second conductivity type material is then diffused out of the filled trench material to the substrate region surrounding the trench to form the non-laterally disposed charge collection region. The filled trench material is removed to provide a trench recess, and the trench recess is filled with a material having a first conductivity type material. A surface implant layer is formed at either side of the trench having a first conductivity type material. A collection region of a trench-type photosensitive element is formed of the outdiffused second conductivity type material and is isolated from the substrate surface.
Abstract:
The image qualify of an image frame from a CMOS image sensor array operated in global shutter mode may be enhanced by dispersing or randomizing the noise introduced by leakage currents from floating drains among the rows of the image frame. Further, the image quality may be improved by accounting for time dependent changes in the output of dark pixels in dark pixel rows or dark pixel columns. In addition, voltage and time dependent changes in the output of dark pixels may also be measured to provide an accurate estimate of the noise introduced to the charge held in the floating drains. Such methods may be employed individually or in combination to improve the quality of the image.
Abstract:
A global shutter compatible pixel circuit comprising a reset gate (RG) transistor is provided in which a dynamic voltage is applied to the drain of the reset gate transistor in order to reduce a floating diffusion (FD) leakage therethrough during signal hold time. The drain voltage of the reset gate transistor is held at a lower voltage than a circuit supply voltage to minimize the off-state leakage through the RG transistor, thus reducing the change in the voltage at the floating diffusion during the signal hold time. In addition, a design structure for such a circuit providing a dynamic voltage to the drain of a reset gate of a pixel circuit is also provided.