Abstract:
An embodiment of a pressure control assembly for a wireline cable disposed in a wellbore comprises a housing frame, at least a pair of sealing devices disposed in the housing, the sealing devices defining an aperture for a cable to pass therethrough and a chamber therebetween, and a lubricant recirculation system for injecting and recirculating a lubricant into the chamber, the assembly operable to lubricate the cable and seal the cable, and maintain a predetermined pressure within the housing frame while the cable is disposed therein.
Abstract:
A cable includes an electrically conductive cable core for transmitting electrical power and data, an insulative/protective layer circumferentially disposed around the core, an inner armor wire layer including a plurality of armor wires disposed around the cable core and the insulative layer, wherein at least one of the armor wires of the inner armor wire layer is bonded to the insulative layer, and an outer armor wire layer including a plurality of armor wires disposed around the inner armor wire layer. At least one of the armor wires of the outer armor wire layer can be bonded to the at least one of the armor wires of the inner armor wire layer.
Abstract:
An embodiment of a wellbore cable comprises a cable core, at least a first armor wire layer comprising a plurality of strength members and surrounding the cable core, and at least a second armor wire layer comprising a plurality of strength members surrounding the first armor wire layer, the second armor wire layer covering a predetermined percentage of the circumference of the first armor wire layer to prevent torque imbalance in the cable.
Abstract:
A cable and a method of making the cable includes an electrically conductive cable core for transmitting electrical power and at least one layer of a plurality of armor wires surrounding the cable core. At least one of the armor wires is a bimetallic armor wire having a coaxial inner portion and a surrounding outer portion. The inner and outer portions are formed of different metallic materials and the bimetallic armor wire provides a return path for the electrical power transmitted through the cable core.
Abstract:
An embodiment of a method for manufacturing a cable, comprises providing a cable core comprising at least one conductor therein, extruding a stopping layer about at least the cable core, extruding a jacketing layer about the stopping layer, and cabling at least one armor wire layer about the jacketing layer to form the cable, wherein the stopping layer comprises a polymer layer configured to mechanically and thermally protect the cable core.
Abstract:
A wireline cable includes an electrically conductive cable core for transmitting electrical power, an inner armor layer disposed around the cable core, and an outer armor layer, wherein a torque on the cable is balanced by providing the outer armor layer with a predetermined amount of coverage less than an entire circumference of the inner armore layer, or by providing the outer armor layer and the inner armor layer with a substansially zero lay angle.
Abstract:
Disclosed are wellbore electric cables, and methods of manufacturing such cables, and in one aspect, methods of manufacturing wireline composite slickline cables. Some embodiments are methods which include preparing a slickline cable by providing an inner metallic tube containing at least one conductor (such as an optical fiber), disposing an epoxy/fiber composite strength layer substantially upon the outer periphery of the inner metallic tube, and exposing the combination of the inner metallic tube and composite strength layer to at least one technique for minimizing the variation in diameter and providing a substantially uniform circular cross-sectional shape of the combination. Further, an outer metallic tube is draw around the combination of the composite strength member and the inner metallic tube, to form a wellbore slickline. Cables prepared using such methods are also disclosed.
Abstract:
Disclosed are wellbore electric cable components, methods of manufacturing such components, and cables incorporating the components. Particularly, ruggedized optical fibers useful for forming slickline electric cables are described. The ruggedized optical fiber components contain one or more coated optical fibers, metallic conductors, non-fiber-reinforced resins, and long-fiber-reinforced resins. The optical fiber(s) are generally positioned in the center of the component, while the metallic conductors are helically disposed around the metallic conductors. The long-fiber-reinforced resin forms an outer jacket around the combination of optical fibers and metallic conductors. A non-fiber-reinforced resin is disposed directly upon the metallic conductors, between the conductors and long-fiber-reinforced resin.
Abstract:
An electrical cable having a polymeric inner layer enclosing a cable core, and a polymeric outer layer enclosing the cable core and the inner layer. The outer layer operable to maintain integrity of the cable within a predetermined temperature range.
Abstract:
An assembly for positioning a well access line in a well. The assembly is located between a supply of well access line and a well, with the line running through the assembly and to the well. Multiple pulleys are incorporated into the assembly about which a well access line such as a conventional wireline may be wrapped. The pulleys are biased to one another such that slack in the line may be stored at the assembly and drawn on in the event of line tension spiking up to a predetermined amount. As such, tension in the line may be kept to a minimum so as to avoid damage to the line during a well access operation. Furthermore, should the tension in the line fail to come back down to below the predetermined amount, the well access operation may be halted in an automated manner. Halting may proceed while continuing to allow take-up of the slack in the line until completed halting of the operation is achieved.