摘要:
A method of simultaneously bonding components, comprising the following steps. At least first, second and third components are provided and comprise: at least one glass component; and at least one conductive or semiconductive material component. The order of stacking of the components is determined to establish interfaces between the adjacent components. A hydrogen-free amorphous film is applied to one of the component surfaces at each interface comprising an adjacent: glass component; and conductive or semiconductive component. A sol gel with or without alkaline ions film is applied to one of the component surfaces at each interface comprising an adjacent: conductive or semiconductive component; and conductive or semiconductive component. The components are simultaneously anodically bonded in the determined order of stacking.
摘要:
A method of bonding components comprising the following steps. At least a first ceramic component and a second ceramic component are provided. A first conductive layer is formed over the upper surface of the first ceramic component. An intermediate film is formed over the first conductive layer. A second conductive layer is formed over the lower surface of the second ceramic component. The second ceramic component is stacked over the first ceramic component wherein the second conductive layer on the second ceramic component opposes the intermediate film on the first component. The first and second ceramic components are anodically bonded together.
摘要:
The disclosure provides compounds and methods of using Apogossypolone derivatives for treating diseases and disorders. In particular, the disclosure provides compounds of Formula I: or a pharmaceutically acceptable salt, hydrate, or solvate thereof, and provides methods for the preparation of compounds of Formula I; and methods for treating cancer, autoimmune diseases, and inflammation by administering a compound of Formula I.
摘要:
The present invention relates to a method for processing human placental cell sample, a human placental cell sample obtained according to said method for processing human placental cell sample, a human placental cell bank, a method for banking human placental cells, a method for searching human placental cell sample in said human placental cell bank according to the present invention, a method for preparing human cord blood serum, use of human placental cells obtained by said method for processing human placental cell sample or human placental cell bank established by said method for banking human placental cells in treating human dysfunction and diseases due to cell injury or cell malfunction, as well as a method for treating human dysfunction and diseases due to cell injury or cell malfunction.
摘要:
A method of simultaneously bonding components, comprising the following steps. At least first, second and third components are provided and comprise: at least one glass component; and at least one conductive or semiconductive material component. The order of stacking of the components is determined to establish interfaces between the adjacent components. A hydrogen-free amorphous film is applied to one of the component surfaces at each interface comprising an adjacent: glass component; and conductive or semiconductive component. A sol gel with or without alkaline ions film is applied to one of the component surfaces at each interface comprising an adjacent: conductive or semiconductive component; and conductive or semiconductive component. The components are simultaneously anodically bonded in the determined order of stacking.
摘要:
A method of bonding two components by depositing an amorphous and non-hydrogenated intermediate layer (2) on one of the components (1,4) and arranging the components (1,4) in spaced relationship with the intermediate layer (2) therebetween. The method further comprises heating one or both of the components (1,4) before bringing the components (1,4) into contact. Finally, a voltage is applied to the components (1,4) to create a permanent bond between the two components.
摘要:
A method of bonding components comprising the following steps. At least a first ceramic component and a second ceramic component are provided. A first conductive layer is formed over the upper surface of the first ceramic component. An intermediate film is formed over the first conductive layer. A second conductive layer is formed over the lower surface of the second ceramic component. The second ceramic component is stacked over the first ceramic component wherein the second conductive layer on the second ceramic component opposes the intermediate film on the first component. The first and second ceramic components are anodically bonded together.
摘要:
Several micro-machined, ultra-profile two-axis and three-axis accelerometers are fabricated by CMOS-compatible process, which makes them suitable for volume production. The x, y axis signal is based on natural thermal convection, and z-axis signal may be based on thermal convention or piezoresistive in nature. The bulk MEMS (Micro-Electro-Mechanical-Systems) process is based on Deep Reactive Ion Etching (DRIE). After the front-end fabrication process, the accelerometers are packaged at wafer level by glass frit and/or anodic bonding, which lowers the device cost.