Abstract:
Disclosed is a method of controlling a deep power down mode in a multi-port semiconductor memory having a plurality of ports connected to a plurality of processors. Control of the deep power down mode in the multi-port semiconductor memory is performed such that activation/deactivation of the deep power down mode are determined in accordance with signals applied through various ports in the plurality of ports.
Abstract:
A memory system including a memory controller and a memory and a related method are disclosed. The method includes communicating a command and error detection/correction (EDC) data associated with the command from the memory controller to the memory, decoding the command and executing an EDC operation related to the EDC data in parallel, and if the command is a write command, delaying execution of a write operation indicated by the write command until completion of the EDC operation, else immediately executing an operation indicated by the command without regard to completion of the EDC operation.
Abstract:
A memory system including a memory controller and a memory and a related method are disclosed. The method includes communicating a command and error detection/correction (EDC) data associated with the command from the memory controller to the memory, decoding the command and executing an EDC operation related to the EDC data in parallel, and if the command is a write command, delaying execution of a write operation indicated by the write command until completion of the EDC operation, else immediately executing an operation indicated by the command without regard to completion of the EDC operation.
Abstract:
A system having a transmission unit transmitting an output data signal formed from output data and related error detection code and a corresponding receiving unit. The output data signal is pre-emphasized by a pre-emphasis driver in the transmission unit. The receiving unit includes an equalizer equalizing the received output data signal and an error detector analyzing the error detection code to determine whether a bit error is present in the received data. Upon successive data transmission failures either an equalization coefficient in the equalizer or a pre-emphasis coefficient in the pre-emphasis driver are changed.
Abstract:
A semiconductor memory device and an arrangement method thereof are disclosed. The semiconductor memory device comprises column selecting signal lines and global data IO signal lines arranged on the same layer in the same direction above a memory cell array; word lines and first local data IO signal lines arranged on a different layer from the column selecting signal lines above the memory cell array, in a perpendicular direction to the column selecting signal lines; and second local data IO signal lines arranged on a different layer from the column selecting signal lines and the word lines above the memory cell array, in the same direction as the first local data IO signal lines.
Abstract:
The invention provides an improved memory system that addresses signal degradation due to transmission line effects. The improved memory system includes a first buffer, at least one first memory device coupled to the first buffer, and a plurality of signal traces. The first buffer and memory device are mounted on a motherboard. Likewise, the plurality of signal traces is routed on the motherboard. Doing so eliminates stub loads that cause signal reflection that, in turn, result in signal degradation.