Abstract:
The present specification discloses a membrane reactor comprising a reaction region; a permeate region; and a composite membrane disposed at a boundary of the reaction region and the permeate region, wherein the reaction region comprises a bed filled with a catalyst for dehydrogenation reaction, wherein the composite membrane comprises a support layer including a metal with a body-centered-cubic (BCC) crystal structure, and a catalyst layer including a palladium (Pd) or a palladium alloy formed onto the support layer, wherein ammonia (NH3) is supplied to the reaction region, the ammonia is converted into hydrogen (H2) by the dehydrogenation reaction in the presence of the catalyst for dehydrogenation reaction, and the hydrogen permeates the composite membrane and is emitted from the membrane reactor through the permeate region.
Abstract:
Disclosed are a method for supplying molten carbonate fuel cell with electrolyte and a molten carbonate fuel cell using the same, wherein a molten carbonate electrolyte is generated from a molten carbonate electrolyte precursor compound in a molten carbonate fuel cell and is supplied to the molten carbonate fuel cell.
Abstract:
Disclosed is a carbon support for a fuel cell catalyst that supports a metal. The carbon support includes a conductive carbon support and nitrogen atoms doped into the conductive carbon support. Also disclosed is a method for preparing the carbon support. Also disclosed is a catalyst including the carbon support. The catalyst has greatly improved degradation resistance compared to conventional catalysts for fuel cells. In addition, the catalyst is not substantially degraded even when applied to a single cell.
Abstract:
Provided is poly(benzimidazole-co-benzoxazole) having polybenzimidazole to which benzoxazole units are introduced, as a polymer electrolyte material. The polymer electrolyte material has both high proton conductivity and excellent mechanical properties even when it is obtained by in-situ phosphoric acid doping. The polymer electrolyte material may substitute for the conventional phosphoric acid-doped polybenzimidazole in a polymer electrolyte membrane fuel cell, particularly in a high-temperature polymer electrolyte membrane fuel cell.
Abstract:
The present specification discloses a membrane reactor comprising a reaction region; a permeate region; and a composite membrane disposed at a boundary of the reaction region and the permeate region, wherein the reaction region comprises a bed filled with a catalyst for dehydrogenation reaction, wherein the composite membrane comprises a support layer including a metal with a body-centered-cubic (BCC) crystal structure, and a catalyst layer including a palladium (Pd) or a palladium alloy formed onto the support layer, wherein ammonia (NH3) is supplied to the reaction region, the ammonia is converted into hydrogen (H2) by the dehydrogenation reaction in the presence of the catalyst for dehydrogenation reaction, and the hydrogen permeates the composite membrane and is emitted from the membrane reactor through the permeate region.
Abstract:
The present invention provides a hydrogen generating apparatus and a hydrogen generating method, wherein the hydrogen generating apparatus generates hydrogen by dehydrating formic acid, and comprises: a reactor for containing water and a heterogeneous catalyst; a formic acid feeder for feeding formic acid into the reactor; and a moisture remover for removing moisture generated from the reactor.
Abstract:
Provided is a method for preparing a catalyst for a dehydrogenation reaction of formate and a hydrogenation reaction of bicarbonate, the method including: adding a silica colloid to a polymerization step of polymerizing aniline and reacting the resulting mixture to form a poly(silica-aniline) composite; carbonizing the corresponding poly(silica-aniline) composite under an atmosphere of an inert gas; removing silica particles from the corresponding poly(silica-aniline) composite to form a polyaniline-based porous carbon support; and fixing palladium particles on the corresponding polyaniline-based porous carbon support to prepare the catalyst.
Abstract:
An anode for a molten carbonate fuel cell (MCFC) having improved creep property by adding CeO2 and/or Cr for imparting creep resistance to nickel-aluminum alloy and nickel as materials for an anode is provided. Improved sintering property, creep property and increased mechanical strength of a molten carbonate fuel cell may be obtained accordingly.
Abstract:
Provided is a method for preparing a catalyst for a dehydrogenation reaction of formate and a hydrogenation reaction of bicarbonate, the method including: adding a silica colloid to a polymerization step of polymerizing aniline and reacting the resulting mixture to form a poly(silica-aniline) composite; carbonizing the corresponding poly(silica-aniline) composite under an atmosphere of an inert gas; removing silica particles from the corresponding poly(silica-aniline) composite to form a polyaniline-based porous carbon support; and fixing palladium particles on the corresponding polyaniline-based porous carbon support to prepare the catalyst.
Abstract:
Disclosed is a homogeneous catalyst having a single phase of Perovskite oxide, wherein at least one doping element is substituted at site A, site B or sites A and B in ABO3 Perovskite type oxide so that the wettability with a liquid molten carbonate electrolyte may be decreased. The catalyst may have high catalytic activity, inhibit catalyst poisoning caused by creepage and evaporation of a liquid molten carbonate electrolyte, maintain high reaction activity for a long time, provide high methane conversion, and allow production of synthetic gas having a high proportion of hydrogen.