Abstract:
An endoscope includes: a first illumination optical system which emits illuminating light in a first linear polarization direction to an object from a distal end face of an insertion portion; and a first objective optical system which allows return light from the object to enter through an objective window provided in the distal end face; wherein the first illumination optical system and the first objective optical system are placed in a positional relationship such that on the distal end face, a line segment connecting an optical axis of the first illumination optical system and an optical axis of the first objective optical system is parallel or perpendicular to a polarization direction which results when the illuminating light emitted from the first illumination optical system is projected to the distal end face, and no polarizing element is provided between the object and the objective window.
Abstract:
A capsule for determining the blood content of living tissue in vivo in a patient to detect tumors. The capsule includes a light source and a light detector for directing light onto the tissue and for receiving interacted light therefrom. By analyzing the interacted lights a determination can be made of the blood content of that tissue. There are various ways of positioning the capsule so that it contacts the tissue in the desired orientation of the light source and light detector. There is also a system for determining the actual contact between the capsule and the tissue. A calibration system is also used that allows a self calibration that can be carried out easily and accurately just prior to the use of the capsule.
Abstract:
Capsule type endoscopes generate large amounts of in-vivo image data that requires review and analysis by a doctor or clinician. By not reviewing the images gathered from healthy tissue, and only focusing on images indicating potential abnormalities, the time it takes to review the data can be greatly reduced. By correlating the tissue images with a characteristic known to indicate a potential abnormality, only the suspect images need to be reviewed.
Abstract:
An endoscope has an insertion portion, a contact portion, an observation portion and a marking portion. The insertion portion can be inserted into a body cavity. The contact portion is provided at a distal end portion of the insertion portion. The contact portion provided at the distal end portion can be in contact with a subject. The observation portion is provided at the contact portion. The marking portion is provided at the contact portion. The marking portion applies a marker to the subject with which the contact portion is in contact.
Abstract:
An endoscope has an insertion portion, an abutment portion, an increasing device and an observation portion. The insertion portion is an insertion portion which can be inserted into a subject. The abutment portion is provided at a distal end portion of the insertion portion. The abutment portion provided at the distal end portion can contact with the subject. The increasing device increases the abutment area of the abutment portion. The observation portion performs observation of the subject on the abutment portion provided at the distal end portion and having been increased by the increasing device, or performs observation of the subject spaced by a predetermined distance by the increased abutment portion.
Abstract:
An endoscope device obtains tissue information of a desired depth near the tissue surface. A xenon lamp (11) in a light source (4) emits illumination light. A diaphragm (13) controls a quantity of the light that reaches a rotating filter. The rotating filter has an outer sector with a first filter set, and an inner sector with a second filter set. The first filter set outputs frame sequence light having overlapping spectral properties suitable for color reproduction, while the second filter set outputs narrow-band frame sequence light having discrete spectral properties enabling extraction of desired deep tissue information. A condenser lens (16) collects the frame sequence light coming through the rotating filter onto the incident face of a light guide (15). The diaphragm controls the amount of the light reaching the filter depending on which filter set is selected.
Abstract:
In the light source unit 3A, a switching filter section 14, which can switch the RGB filter for normal-light observation and a filter for fluorescent observation on the optical path, is installed in front of the lamp 12, where if the fluorescent image mode is selected, the excitation light in a part of the blue wavelength band is supplied to the electronic endoscope 2A, and the excitation light reflected by the subject side is shielded by the excitation light cut filter 27 in front of the CCD 28 so as to obtain the fluorescent image, and also the signal of the fluorescent image and the signals of the two reflected light images which are set in a predetermined wavelength band are passed through the image processing circuit 38, where a matrix circuit for appropriately allocating the color signals of the R, G and B channels is installed, and as a result, the images can be displayed on the monitor 5 in pseudo-colors in hues which allow easy identification of a normal tissue and a pathologically affected tissue.
Abstract:
A capsule for determining the blood content of living tissue in vivo in a patient to detect tumors. The capsule includes a light source and a light detector for directing light onto the tissue and for receiving interacted light therefrom. By analyzing the interacted light, a determination can be made of the blood content of that tissue. There are various ways of positioning the capsule so that it contacts the tissue in the desired orientation of the light source and light detector. There is also a system for determining the actual contact between the capsule and the tissue. A calibration system is also used that allows a self calibration that can be carried out easily and accurately just prior to the use of the capsule.
Abstract:
Apparatus and methods for detecting foreign material obstructing a blood content sensor window to facilitate higher data accuracy from such sensors, in accordance with one embodiment of the invention for detecting foreign matter with the blood content sensor when the blood content sensor is not contacted with living tissue, an illuminator for blood content detection and the blood content sensor share a common outer window. When the window is at a distance from tissue and in absence of foreign matter on the window, all or most of the emitted light will be dispersed and little or no light will be reflected back into the sensor. Conversely, when the window is at a distance from tissue and foreign matter is present on the window, a substantial portion of the emitted light will be reflected back into the sensor indicating the presence of the foreign matter.
Abstract:
A probe detachably connected to an optical measurement apparatus includes: a fiber that emits light by the optical measurement apparatus, and outputs reflected light and/or scattered light from an object to be measured; a covering member that covers a side face of the fiber; a cap that covers a distal end of the probe; a standard object that is provided on a surface of the cap facing the distal end of the fiber and that is used in calibration measurement by light emitted from the distal end of the fiber; an adhesive member that adheres the cap to the distal end of the probe and is made of an adhesive material; a heat-generating portion that generates heat to be applied to the adhesive member; and a thermal conduction portion that conducts heat that decreases the adhesive strength of the adhesive material with respect to the covering member.