Abstract:
A method for forming a capacitor, a capacitor formed thereby and an improved composition for a conductive coating are described. The method includes providing an anode, forming a dielectric on the anode and forming a cathode layer over the dielectric by applying a monoamine, a weak acid and a conductive polymer.
Abstract:
An improved process for forming a conjugated thiophene precursor is described as in the formation of an improved polymer prepared from the conjugated thiophene and an improved capacitor formed from the improved polymer. The improved process includes forming a thiophene mixture comprising thiophene monomer, unconjugated thiophene oligomer, optionally a solvent and heating the thiophene mixture at a temperature of at least 100° C. to no more than the lower of 250° C. or the boiling point of a component of said thiophene mixture with the lowest boiling point temperature.
Abstract:
A capacitor and a method of making a capacitor, is provided with improved reliability performance. The capacitor comprises an anode; a dielectric on the anode; and a cathode on the dielectric wherein the cathode comprises a conductive polymer and a polyanion wherein the polyanion is a copolymer comprising groups A, B and C represented by Formula AxByCz as described herein.
Abstract:
A process for providing an improved hermetically sealed capacitor which includes the steps of applying a solder and a flux to an interior surface of a case; flowing the solder onto the interior surface; remove flux thereby forming a flux depleted solder; inserting the capacitive element into the casing; reflowing the flux depleted solder thereby forming a solder joint between the case and the solderable layer; and sealing the case.
Abstract:
A capacitor and process for forming the capacitor, is provided wherein the capacitor comprises a conductive polymer layer. The conductive polymer comprises first particles comprising conductive polymer and polyanion and second particles comprising the conductive polymer and said polyanion wherein the first particles have an average particle diameter of at least 1 micron to no more than 10 microns and the second particles have an average particle diameter of at least 1 nm to no more than 600 nm.
Abstract:
Provided is an improved capacitor formed by a process comprising: providing an anode comprising a dielectric thereon wherein the anode comprises a sintered powder wherein the powder has a powder charge of at least 45,000 μFV/g; and forming a first conductive polymer layer encasing at least a portion of the dielectric by applying a first slurry wherein the first slurry comprises a polyanion and a conductive polymer and wherein the polyanion and conductive polymer are in a weight ratio of greater than 3 wherein the conductive polymer and polyanion forms conductive particles with an average particle size of no more than 20 nm.
Abstract:
An improved capacitor is provided wherein the capacitor comprises a conductive polymer layer. The conductive polymer comprises first particles comprising conductive polymer and polyanion and second particles comprising the conductive polymer and said polyanion wherein the first particles have an average particle diameter of at least 1 micron to no more than 10 microns and the second particles have an average particle diameter of at least 1 nm to no more than 600 nm.
Abstract:
A capacitor and a method of making a capacitor, is provided with improved reliability performance. The capacitor comprises an anode; a dielectric on the anode; and a cathode on the dielectric wherein the cathode comprises a conductive polymer and a polyanion wherein the polyanion is a copolymer comprising groups A, B and C represented by Formula AxByCz as described herein.
Abstract:
An improved process for forming a capacitor, and improved capacitor formed thereby is described. The process includes: providing an anode comprising a dielectric thereon; applying a first layer of an intrinsically conducting polymer on the dielectric to form a capacitor precursor; applying at least one subsequent layer of an intrinsically conducting polymer on the first layer from a dispersion; and treating the capacitor precursor at a temperature of at least 50° C. no more than 200° C. at a relative humidity of at least 25% up to 100%, or fusing the layered structure by swelling the layered structure with a liquid and at least partially removing the liquid.
Abstract:
An improved process for forming a capacitor, and improved capacitor formed thereby is described. The process includes: providing an anode comprising a dielectric thereon; applying a first layer of an intrinsically conducting polymer on the dielectric to form a capacitor precursor; applying at least one subsequent layer of an intrinsically conducting polymer on the first layer from a dispersion; and treating the capacitor precursor at a temperature of at least 50° C. no more than 200° C. at a relative humidity of at least 25% up to 100%, or fusing the layered structure by swelling the layered structure with a liquid and at least partially removing the liquid.