Abstract:
A resin composition for encapsulation according to the present invention includes: a phenol resin-based curing agent (A) essentially containing a polymer component (A-1) in which a biphenylene group-containing structural unit bonds a monovalent hydroxyphenylene structural unit and a polyvalent hydroxyphenylene structural unit together and a polymer component (A-2) in which the biphenylene group-containing structural unit bonds the polyvalent hydroxyphenylene structural units together; an epoxy resin (B); and an inorganic filler (C). This makes it possible to economically obtain a resin composition for encapsulation having soldering resistance, flame resistance, continuous moldability, flowability and high temperature storage stability in an excellent balanced manner, and an electronic component device produced by encapsulating an element with a cured product thereof and having high reliability.
Abstract:
A flexible card which allows data of the card to be changed with a simple operation is provided, thereby permitting users to sustain interest in the card and a relevant game. The card comprises a first dot pattern in which a coordinate value or a code value is patterned and which is recognizable by predetermined irradiation light at least on one surface thereof and a second dot pattern which is patterned in a predetermined algorithm in a region overlapping with a region where the first dot pattern is provided or a region different from a region where the first dot pattern is provided.
Abstract:
According to one embodiment, a signal processing circuit processes a signal read from a magnetic disk including a servo region and a user data region, the servo region including a servo address mark, the user data region including a data sector, and includes a counter and a gate controller. The counter is configured to count a first clock when having detected the servo address mark based on the signal read from the magnetic disk. The gate controller is configured to generate a pulse for locating the data sector in synchronization with a second clock when the counter counts a first value.
Abstract:
An internal voltage adjusting circuit of a semiconductor memory device processes a period from activation to deactivation of a reset bar signal by dividing the period into a first period to a third period. In the first period, a peripheral circuit voltage is stabilized to a lowest value to suppress power consumption. In the second period in which a power source voltage is stabilized, the peripheral circuit voltage is set to a highest value to read out optimum internal voltage values from a fuse circuit in a stable manner. In the third period after reading out the optimum internal voltage values, the peripheral circuit voltage is returned to the lowest value to suppress the power consumption. When the reset bar signal is deactivated, the peripheral circuit voltage is set based on the optimum internal voltage values read out from the fuse circuit.
Abstract:
With the aim of realizing an easy and inexpensive method of realizing a “stealth” dot pattern, whose presence on a medium surface is not visually recognizable, merely through minor improvements in the existing printing technology, the present invention provides dots which form a dot pattern by printing these dots using an ink of any color reactive in the infrared or ultraviolet wavelength range on a medium surface on which a dot pattern is to be formed, for use with a dot pattern reading system that irradiates infrared or ultraviolet light on a medium surface having a dot pattern provided thereon, recognizes the dot pattern by reading the reflections of the light with an optical reading means, converts the dot pattern into the corresponding data, and outputs the text, voice, images and so forth contained in the data.
Abstract:
According to one embodiment, a signal processing device comprises a first waveform equalizer, a second waveform equalizer, a first Viterbi decoder, a second Viterbi decoder. The first and the second waveform equalizers equalize a waveform of the input signal according to first and second partial response characteristics and output first and second partial response signals. The first and second Viterbi decoders decode the first and the second partial response signals by means of Viterbi decoding process. The input signal is reproduced based on an output of the first Viterbi decoder and an output of the second Viterbi decoder.
Abstract:
According to one embodiment, an encoder/decoder apparatus includes an encoder module, a decoder module, and a transposing module. The encoder module is configured to generate a Hamming code from the input data, in accordance with a check matrix having a specific regularity. The decoder module is configured to detect an error position in the output data composed of the Hamming code, in accordance with the check matrix. The transposing module is configured to perform a transposing process of transposing some of the columns of the check matrix, while maintaining the regularity of the check matrix, and to change the error position in accordance with the transposing process, during the decoding process.
Abstract:
A torque control device controlling torque of first and second mechanical units connected coaxially to each other through connecting members includes a controller generating first and second references from a command from a host system, first and second motors respectively driving the first and second mechanical units, first and second motor control units respectively controlling the first and second motors on the basis of the first and second references. The first and second references synchronously accelerate the first and second motors to first rotational speed, then increase rotational speed of the second motor according to a speed profile to produce torsional torque in the connecting members, decelerate the second motor to the first rotational speed after the torsional torque reaches a predetermined value, and synchronously decelerate and stop the first and second motors after a predetermined time period elapses.
Abstract:
According to one embodiment, a logical circuit to be simulated includes a timing network and a specific logical device. The timing network transmits a logical value change of an input signal in correspondence with an elapse of time or clock number increments. The specific logical device receives a timing network output signal that appears at an exit node of the timing network, and a logical value change or a logical value after change of the clock. When predetermined constraint information represents a constraint that a time period or the demanded number of clock cycles needed for a transition of a signal level change to pass through a signal path in the timing network is equal to or smaller than a predetermined numerical value (or equal to or larger than a predetermined numerical value), it is checked if the signal input to the specific logical device violates the predetermined constraint information.
Abstract:
It is an object of the present invention to provide an information input/output method that is capable of imparting different functions to dots of a dot pattern displayed on a printed matter, thereby, at the time of providing information from the dot pattern, recognizing directivity and speedily providing information and that is capable of checking an error relative to a dot layout state, and further, that is capable of enhancing security. Therefore, according to the present invention, the information input/output method is provided, and includes: defining as a block a rectangular area of a square or a rectangle, of a medium face such as a printed matter; while a straight line in a vertical direction and a horizontal direction configuring a frame of the block is defined as a standard grid line, providing a virtual reference grid point by predetermined interval on the reference grid line; laying out a reference grid point dot on a virtual reference grid point; connecting the virtual reference grid points to each other and defining a straight line parallel to the reference grid line as a grid line; defining a cross point between the grid lines as a virtual grid point; generating a dot pattern obtained by laying out one or a plurality of information dots, respectively, having a distance and a direction around the virtual grid point; reading such dot pattern as image information by optical reader means; numerically valuing the dot pattern; and reading and outputting information that corresponds to the numerically valued information from storage means.