Abstract:
The present invention provides methods for the reduction of endotoxins in a plasmid preparation using a carbohydrate non-ionic detergent with silica chromatography.
Abstract:
The present invention provides an imageable element including a lithographic substrate and an imageable layer disposed on the substrate. The imageable layer includes a radically polymerizable component, an initiator system capable of generating radicals sufficient to initiate a polymerization reaction upon exposure to imaging radiation, and a polymeric binder having a hydrophobic backbone and including constitutional units having a pendant group including a hydrophilic poly(alkylene oxide) segment. The imageable element can be developed using an aqueous developer solution. Alternatively, the imageable element can be developed on-press by contact with ink and/or fountain solution.
Abstract:
Multilayer, positive working, thermally imageable, bakeable imageable elements are disclosed. The elements have a substrate, an underlayer, and a top layer. The underlayer comprises a resin or resins having activated methylol and/or activated alkylated methylol groups, such as a resole resin, and a polymeric material that comprises, in polymerized form about 5 mol % to about 30 mol % of methacrylic acid; about 20 mol % to about 75 mol % of N-phenylmaleimide, N-cyclohexylmaleimide, N-benzylmaleimide, or a mixture thereof; optionally, about 5 mol % to about 50 mol % of methacrylamide; and about 3 mol % to about 50 mol % of a compound represented by the formula: CH2C(R2)C(O)NHCH2OR1, in which R1 is C1 to C12 alkyl, phenyl, C1 to C12 substituted phenyl, C1 to C12 aralkyl, or Si(CH3)3; and R2 is H or methyl. The elements produce bakeable lithographic printing plates that are resistant to press chemistries.
Abstract:
Flexographic printing members amenable to aqueous (or organic) development do not exhibit the deleterious effects on printing performance characteristic of some conventional alternatives. Embodiments of the invention utilize a photopolymerizable layer comprising, consisting of, or consisting essentially of a photopolymerization initiator and a water-dilutable (but not water-soluble) monomer.
Abstract:
In ablation-type printing plates involving silicone acrylate top layers, curing at high oxygen levels not only substantially reduces or eliminates toning, but does not adversely affect plate durability or printing performance.
Abstract:
Sequentially subjecting an imaged ablation-type printing member having a silicone topmost layer to, first, a cleaning liquid that is not a solvent for silicone, followed by subjecting to a second cleaning liquid that is a silicone solvent, conditions the printing member for subsequent printing with high-solids inks.
Abstract:
Low-VOC cleaning compositions effective in removing stubborn UV inks from printing-press components include at least one non-ionic surfactant selected from the group consisting of a sorbitan ester, an ethoxylated sorbitan ester, an ethoxylated castor oil, polyethylene glycol ester and an alcohol ethoxylate; and at least one carrier comprising or consisting essentially of at least one of (i) an organic solvent miscible therewith or (ii) D-limonene. The cleaning composition has a VOC limit less than 100 g/L.
Abstract:
Both single-layer and multilayer imageable elements have a substrate and at least one imageable layer. The elements can be used to prepare either negative- or positive-working imaged elements, for example as lithographic printing plates. The imageable elements also include a radiation absorbing compound and a solvent-resistant polymer comprising pendant phosphoric acid groups, pendant adamantyl groups, or both. When this polymer comprises pendant adamantyl groups, they are connected to the polymer backbone through a urea or urethane group. The imageable elements have improved chemical resistance and thermal bakeability from the presence of the unique solvent-resistant polymer.
Abstract:
Thermally imageable elements comprising a masking layer and a substrate are disclosed. The masking layer contains a sulfated polymer or a mixture of sulfated polymers and absorbs both infrared and ultraviolet radiation. When the masking layer is on the substrate, the imageable element may be imaged and developed to form a photomask. When the imageable element additionally comprises a photosensitive layer, the masking layer may be imaged and developed to form an integral photomask. The imageable elements that comprise a photosensitive layer are useful as flexographic printing plate precursors.
Abstract:
Apparatus and method for exposing a lithographic printing plate wherein the apparatus includes a plurality of laser diodes emitting light of wavelength between 350 nm and 450 nm. The light from each of the laser diodes is directed onto the lithographic printing plate such that each spot on the lithographic printing plate receives light emitted from at least one of the laser diodes. Preferably, the lithographic printing plate is a violet-sensitive lithographic member and the lithographic member is a printing press plate. The power of each laser diode may be between 5 mW and 30 mW, and preferably the laser diodes emit light of wavelength between 390 nm and 430 nm.