摘要:
An efficient method of producing a microporous polyolefin membrane having improved tensile strength and pierce strength is provided, in which a solution having dissolved therein 5% by weight to 50% by weight of a polyolefin whose weight-average molecular weight is in the range of 5.times.10.sup.5 to 2.5.times.10.sup.6 and whose weight-average molecular weight to number-average molecular weight ratio is less than 10, is extruded and rapidly cooled to obtain a gel-like product which is then stretched and has remaining solvent removed therefrom.
摘要:
The present invention provides a microporous polyolefin membrane of high permeability and novel structure, and also provides a method of producing the same, wherein its average pore size is gradually decreases from at least one membrane surface towards its center. The method of producing the microporous polyolefin membrane comprises the steps of extruding the solution, composed of 10 to 50 weight % of (A) a polyolefin having a weight-average molecular weight of 5×105 or more or (B) a composition containing this polyolefin and 50 to 90 weight % of a solvent, into a gel-like formed article and removing the solvent therefrom, wherein a treatment step with a hot solvent is incorporated.
摘要:
A microporous polyolefin membrane is formed by fine fibrils, comprising (A) a polyolefin having a weight-average molecular weight of 5×105 or more or (B) a composition containing component (A), connected to each other, and has micropores of 0.05 to 5 &mgr;m in average pore size and crystal lamellas of component (A) or (B) being in a specific orientation state. The membrane is produced by extruding a solution of component (A) or (B) in a solvent, into a gel-like formed article; thermally setting the article, with or without stretching, at least at the crystal dispersion temperature of component (A) or (B), but at melting point of component (A) or (B) plus 30° C. or lower; and removing the solvent.
摘要:
The thin film of non-protonic electrolyte comprises the microporous polyolefin film impregnated with an immobilized non-protonic electrolytic solution, where the film is treated to have improved affinity for the non-protonic solution by graft polymerization of the film with a monomer which can dissolve the non-protonic electrolytic solution, coating of the film with terminal-modified polypropylene which can dissolve the non-protonic electrolytic solution or coating of the film with wax which can dissolve the non-protonic electrolytic solution. The electrolyte-immobilized liquid-film conductor comprises the microporous polyolefin film impregnated with an immobilized non-protonic electrolytic solution, where the film contains an electron-conductive substance and is treated to have improved affinity for the non-protonic solution. The thin film of non-protonic electrolyte comprising the microporous polyolefin film gives a polymer battery, such as lithium battery, when combined with an anode and cathode. The polymer battery comprising the thin film of non-protonic electrolyte and the electrolyte-immobilized liquid-film conductor which is used at least one of the anode and cathode is advantageous over the conventional lithium battery of polymer electrolyte in various aspects, such as higher discharging function at low temperature, lesser self-discharge at high temperature, and higher charge/discharge characteristics over extended periods.
摘要:
The present invention provides a microporous polyolefin membrane of high permeability and novel structure, and also provides a method of producing the same, wherein its average pore size is gradually decreases from at least one membrane surface towards its center. The method of producing the microporous polyolefin membrane comprises the steps of extruding the solution, composed of 10 to 50 weight % of (A) a polyolefin having a weight-average molecular weight of 5×105 or more or (B) a composition containing this polyolefin and 50 to 90 weight % of a solvent, into a gel-like formed article and removing the solvent therefrom, wherein a treatment step with a hot solvent is incorporated.
摘要:
A microporous polyolefin membrane having excellent compression resistance is obtained by stretching a gel molding comprising a polyolefin and a membrane-forming solvent, removing the membrane-forming solvent, and stretching the resultant membrane again at least uniaxially at a speed of 3%/second or more at a temperature equal to or lower than the crystal dispersion temperature +20° C.
摘要:
A method for producing a microporous polyolefin membrane formed by fine fibrils, the membrane comprising (A) a polyolefin having a weight-average molecular weight of 5×105 or more or (B) a composition containing Component (A), connected to each other, and having micropores of 0.05 to 5 μm in average pore size and crystal lamellas of Component (A) or (B) being in a specific alignment state. The method includes extruding a solution of Component (A) or (B) in a solvent into a gel-like formed article; thermally setting the article, with or without stretching, at least at the crystal dispersion temperature of Component (A) or (B), but at melting point of Component (A) or (B) plus 30° C. or lower; and removing the solvent.
摘要:
It is an object of the present invention to provide a microporous polyolefin membrane, high in pin puncture strength, adequate in pore diameter and high in porosity, comprising (A) an ultra-high-molecular-weight polyolefin having a weight-average molecular weight of 5×105 or more, or (B) a composition containing an ultra-high-molecular-weight polyolefin having a weight-average molecular weight of 5×105 or more, and having a porosity of 30 to 95%, bubble point exceeding 980 KPa and pin puncture strength of 4,900 mN/25 &mgr;m or more. The membrane can be used as a filter or as a separator for a battery.
摘要:
The present invention provides a thin film of non-protonic electrolyte and electrolyte-immobilized liquid-film conductor, easily produced into a thin film and to have a large area, securely holding the non-protonic electrolytic solution over a wide temperature range, and showing stability for extended periods and improved mechanical strength. They comprise a polyolefin film with a solvent-resistant polyolefin as the basic component, which is impregnated with the non-protonic electrolytic solution to immobilize it. The polyolefin composition for the film contains a terminal-modified polypropylene having, in the terminal chain, a functional group showing an affinity for the solvent for the electrolytic solution for the thin film of non-protonic electrolyte, and further contains an electron-conductive substance in addition to the terminal-modified polypropylene for the electrolyte-immobilized liquid-film conductor. As a result, the polyolefin film stably holds the solvent for the electrolytic solution. The present invention also provides a battery which uses the above thin film of non-protonic electrolyte and/or electrolyte-immobilized liquid-film conductor.
摘要:
A method for producing a highly permeable microporous polyolefin membrane including the steps of preparing a polyolefin solution containing 5-40 weight % of a polyolefin or a polyolefin composition and 95-60 weight % of a solvent, the polyolefin having a weight-average molecular weight of not less than 3.times.10.sup.5 and less than 1.times.10.sup.6 and a weight-average molecular weight/number-average molecular weight of 5-300, and the polyolefin composition having a weight-average molecular weight of not less than 3.times.10.sup.5 and less than 1.times.10.sup.6 and a weight-average molecular weight/number-average molecular weight of 5-300 as a whole, extruding the polyolefin solution, stretching the extrudate uniaxially at a draft ratio of 3-50 in a molten state, cooling the stretched extrudate to solidify to a gel-like sheet, removing residual solvent, drying the resultant sheet, and heat-setting at a temperature of 80.degree. C. or higher and its melting point or lower. A polyolefin or its composition is uniaxially stretched before it is cooled to a gel-like sheet. Uniaxial stretching of a viscous polyolefin solution allows micropores to have a large average diameter, thereby improving permeability of the microporous polyolefin membrane and accelerating production.