Abstract:
A lower electrode assembly useful for supporting a semiconductor substrate in a plasma processing chamber includes a temperature controlled lower base plate, an upper plate, a mounting groove surrounding a bond layer and an edge seal comprising a ring compressed in the groove. A gas source supplies inert gas to the groove and maintains the inert gas at a pressure of 100 mTorr to 100 Torr in the groove.
Abstract:
A semiconductor substrate support for supporting a semiconductor substrate in a plasma processing chamber includes a heater array comprising thermal control elements operable to tune a spatial temperature profile on the semiconductor substrate, the thermal control elements defining heater zones each of which is powered by two or more power supply lines and two or more power return lines wherein each power supply line is connected to at least two of the heater zones and each power return line is connected to at least two of the heater zones. A power distribution circuit is mated to a baseplate of the substrate support, the power distribution circuit being connected to each power supply line and power return line of the heater array. A switching device is connected to the power distribution circuit to independently provide time-averaged power to each of the heater zones by time divisional multiplexing of a plurality of switches.
Abstract:
A thermal plate for a substrate support assembly in a semiconductor plasma processing apparatus, includes multiple independently controllable planar thermal zones arranged in a scalable multiplexing layout, and electronics to independently control and power the planar heater zones. Each planar thermal zone uses at least one Peltier device as a thermoelectric element. A substrate support assembly in which the thermal plate is incorporated has an electrostatic clamping electrode layer and a temperature controlled base plate. Methods for manufacturing the thermal plate include bonding together ceramic or polymer sheets having planar thermal zones, positive, negative and common lines and vias.
Abstract:
An edge seal for sealing an outer surface of a lower electrode assembly configured to support a semiconductor substrate in a plasma processing chamber, the lower electrode assembly including an annular groove defined between a lower member and an upper member of the lower electrode assembly. The edge seal includes an elastomeric band configured to be arranged within the groove, the elastomeric band having an annular upper surface, an annular lower surface, an inner surface, and an outer surface. When the elastomeric band is in an uncompressed state, the outer surface of the elastomeric band is concave. When the upper and lower surfaces are axially compressed at least 1% such that the elastomeric band is in a compressed state, an outward bulging of the outer surface is not greater than a predetermined distance. The predetermined distance corresponds to a maximum outer diameter of the elastomeric band in the uncompressed state.
Abstract:
A method of determining thermal stability of an upper surface of a substrate support assembly in a plasma processing apparatus includes: before processing of at least one substrate in the plasma processing apparatus and while powering an array of thermal control elements of the substrate support assembly to achieve a desired spatial and temporal temperature of the upper surface of the substrate support assembly, recording pre-process temperature data of the substrate support assembly; after the processing of the at least one substrate in the plasma processing apparatus and while powering the array of thermal control elements to achieve the desired spatial and temporal temperature of the upper surface of the substrate support assembly, recording post-process temperature data; comparing the post-process temperature data to the pre-process temperature data; and determining whether the post-process temperature data is within a predetermined tolerance range of the pre-process temperature data.
Abstract:
A system for controlling a temperature of a wafer processing substrate includes memory that stores first data indicative of first temperature responses of at least one first thermal control element. The first data corresponds to the first temperature responses as observed when a first control parameter of the at least one first thermal control element is maintained at a first predetermined first value. A first controller receives a setpoint temperature for the wafer processing substrate and maintains the first control parameter of the at least one first thermal control element at a second value based on the received setpoint temperature. A second controller retrieves the first data from the memory, calculates second data indicative of temperature non-uniformities associated with the wafer processing substrate based on the first data and the second value, and controls a plurality of second thermal control elements based on the calculated second data.
Abstract:
A semiconductor substrate support for supporting a semiconductor substrate in a plasma processing chamber includes a heater array comprising thermal control elements operable to tune a spatial temperature profile on the semiconductor substrate, the thermal control elements defining heater zones each of which is powered by two or more power supply lines and two or more power return lines wherein each power supply line is connected to at least two of the heater zones and each power return line is connected to at least two of the heater zones. A power distribution circuit is mated to a baseplate of the substrate support, the power distribution circuit being connected to each power supply line and power return line of the heater array. A switching device is connected to the power distribution circuit to independently provide time-averaged power to each of the heater zones by time divisional multiplexing of a plurality of switches.
Abstract:
An edge seal for sealing an outer surface of a lower electrode assembly configured to support a semiconductor substrate in a plasma processing chamber, the lower electrode assembly including an annular groove defined between a lower member and an upper member of the lower electrode assembly. The edge seal includes an elastomeric band configured to be arranged within the groove, the elastomeric band having an annular upper surface, an annular lower surface, an inner surface, and an outer surface. When the elastomeric band is in an uncompressed state, the outer surface of the elastomeric band is concave. When the upper and lower surfaces are axially compressed at least 1% such that the elastomeric band is in a compressed state, an outward bulging of the outer surface is not greater than a predetermined distance. The predetermined distance corresponds to a maximum outer diameter of the elastomeric band in the uncompressed state.
Abstract:
A method for auto-correction of at least one malfunctioning thermal control element among an array of thermal control elements that are independently controllable and located in a temperature control plate of a substrate support assembly which supports a semiconductor substrate during processing thereof, the method including: detecting, by a control unit including a processor, that at least one thermal control element of the array of thermal control elements is malfunctioning; deactivating, by the control unit, the at least one malfunctioning thermal control element; and modifying, by the control unit, a power level of at least one functioning thermal control element in the temperature control plate to minimize impact of the malfunctioning thermal control element on the desired temperature output at the location of the at least one malfunctioning thermal control element.
Abstract:
A method of determining thermal stability of an upper surface of a substrate support assembly comprises recording time resolved pre-process temperature data of the substrate before performing a plasma processing process while powering an array of thermal control elements to achieve a desired spatial and temporal temperature of the upper surface. A substrate is processed while powering the array of thermal control elements to achieve a desired spatial and temporal temperature of the upper surface of the assembly, and time resolved post-process temperature data of the assembly is recorded after processing the substrate. The post-process temperature data is recorded while powering the thermal control elements to achieve a desired spatial and temporal temperature of the upper surface. The post-process temperature data is compared to the pre-process temperature data to determine whether the data is within a desired tolerance range.