Abstract:
Disclosed are a resin composition and a molded product obtained using the same. By using the resin composition according to the present invention, a molded product having excellent tensile strength, tensile modulus, electromagnetic shielding effects, anti-static effects, and the like may be provided.
Abstract:
Provided is a thermoplastic resin composition for a radar cover which exhibits excellent mechanical properties as well as a good balance between electromagnetic reflection loss and electromagnetic penetration loss, which is required for a radar protection, by including 85 wt % to 95 wt % of a thermoplastic resin, 1 wt % to 5 wt % of carbon nanotubes, and 3 wt % to 10 wt % of carbon black, wherein a weight ratio of the carbon nanotubes to the carbon black is in a range of 3:7 to 1:7.
Abstract:
Disclosed are a thermoplastic polyester elastomer resin composition and a molded article comprising the same. More specifically, disclosed is a thermoplastic polyester elastomer resin composition which comprises a glycidyl group-modified ethylene-octene based copolymer resin, as a chain extension/hydrolysis resistance agent for blow and extrusion molding to improve melt viscosity, and increases a molecular weight through reaction extrusion and thus exhibits superior heat resistance, weather resistance, heat aging resistance, hydrolysis resistance, fatigue resistance properties, melt viscosity and parison stability, and in particular, exhibits superior blow molding, contains no gel, reduces production of odor-causing substances such as volatile organic compounds (TVOC) during blow molding, and maintains a balance between physical properties, moldability and operation environments.
Abstract:
Disclosed are a thermoplastic polyester elastomer resin composition and a molded article comprising the same. More specifically, disclosed is a thermoplastic polyester elastomer resin composition which comprises a glycidyl group-modified ethylene-octene based copolymer resin, as a chain extension/hydrolysis resistance agent for blow and extrusion molding to improve melt viscosity, and increases a molecular weight through reaction extrusion and thus exhibits superior heat resistance, weather resistance, heat aging resistance, hydrolysis resistance, fatigue resistance properties, melt viscosity and parison stability, and in particular, exhibits superior blow molding, contains no gel, reduces production of odor-causing substances such as volatile organic compounds (TVOC) during blow molding, and maintains a balance between physical properties, moldability and operation environments