Abstract:
An organic light-emitting display device and a method of fabricating the same are provided. The organic light-emitting display device includes a substrate having a plurality of trenches; a thin film transistor on the substrate; a light-emitting diode connected to the thin film transistor; an upper auxiliary electrode connected to one of an anode and a cathode of the light-emitting diode; and a lower auxiliary electrode in an auxiliary electrode trench among the plurality of trenches of the substrate and connected to the upper auxiliary electrode.
Abstract:
An array substrate for a display device includes a first thin film transistor (TFT) including a first semiconductor layer, a first gate electrode corresponding to the first semiconductor layer, a first source electrode and a first drain electrode; a second TFT including a second semiconductor layer, a second gate electrode corresponding to the second semiconductor layer, a second source electrode and a second drain electrode; a first transparent capacitor electrode connected to the first drain electrode; a first passivation layer on the first transparent capacitor electrode; a second transparent capacitor electrode on the first passivation layer and connected to the second drain electrode, the second transparent capacitor electrode overlapping the first transparent capacitor electrode; a second passivation layer on or over the first passivation layer and the second transparent capacitor electrode; and a first electrode on the second passivation layer and connected to the second transparent capacitor electrode.
Abstract:
A display apparatus having a connection electrode which crosses a bending area may be provided. The connection electrode may be disposed on a device substrate including a bending area between a display area and a pad area. The connection electrode may connect the display area and the pad area across the bending area. The connection electrode may have a stacked structure of the lower connecting electrode and the upper connecting electrode. A light-emitting device, an encapsulating element and a touch electrode may be sequentially stacked on the display area of the device substrate. The upper connecting electrode may include the same material as the touch electrode. Thus, in the display apparatus, the disconnection of the connection electrode due to bending stress and external impact may be reduced.
Abstract:
A display apparatus having a connection electrode which crosses a bending area may be provided. The connection electrode may be disposed on a device substrate including a bending area between a display area and a pad area. The connection electrode may connect the display area and the pad area across the bending area. The connection electrode may have a stacked structure of the lower connecting electrode and the upper connecting electrode. A light-emitting device, an encapsulating element and a touch electrode may be sequentially stacked on the display area of the device substrate. The upper connecting electrode may include the same material as the touch electrode. Thus, in the display apparatus, the disconnection of the connection electrode due to bending stress and external impact may be reduced.
Abstract:
Disclosed is a display device capable of reducing the thickness and the weigh thereof. A display device having a touch sensor realizes electrical connection of a routing line and a touch pad via an auxiliary conductive layer, which is connected to the routing line under an encapsulation unit, even if a disconnection fault occurs in the routing line, thereby achieving increased yield and reliability. In addition, through the provision of a touch sensor disposed above the encapsulation unit, a separate attachment process is unnecessary, which results in a simplified manufacturing process and reduced costs.
Abstract:
Disclosed are an organic light emitting display device to improve an aperture ratio, and a method of manufacturing the same. The organic light emitting display device includes a plurality of contact holes overlapping an anode of an organic light emitting element in each sub-pixel region, wherein conductive films connected through at least one of the contact holes are transparent, thus allowing regions, where the contact holes are formed, to be used as light emitting regions, thereby improving an aperture ratio.
Abstract:
An organic light-emitting display device and a method of fabricating the same are provided. The organic light-emitting display device includes a substrate having a plurality of trenches; a thin film transistor on the substrate; a light-emitting diode connected to the thin film transistor; an upper auxiliary electrode connected to one of an anode and a cathode of the light-emitting diode; and a lower auxiliary electrode in an auxiliary electrode trench among the plurality of trenches of the substrate and connected to the upper auxiliary electrode.
Abstract:
An organic light-emitting display device and a method of fabricating the same are provided. The organic light-emitting display device includes a substrate having a plurality of trenches; a thin film transistor on the substrate; a light-emitting diode connected to the thin film transistor; an upper auxiliary electrode connected to one of an anode and a cathode of the light-emitting diode; and a lower auxiliary electrode in an auxiliary electrode trench among the plurality of trenches of the substrate and connected to the upper auxiliary electrode.
Abstract:
A substrate for a display device and a display device including the same are disclosed. The substrate includes a first thin-film transistor including an oxide semiconductor layer, a second thin-film transistor spaced apart from the first thin-film transistor and including a polycrystalline semiconductor layer, and a storage capacitor including at least two storage electrodes. One of the at least two storage electrodes is located in the same layer and is formed of the same material as a gate electrode of the second thin-film transistor that is disposed under the polycrystalline semiconductor layer, and another one of the at least two storage electrodes is located above the polycrystalline semiconductor layer with at least one insulation film interposed therebetween. Accordingly, lower power consumption and a larger area of the substrate are realized.
Abstract:
An array substrate for a display device includes a first thin film transistor (TFT) including a first semiconductor layer, a first gate electrode corresponding to the first semiconductor layer, a first source electrode and a first drain electrode; a second TFT including a second semiconductor layer, a second gate electrode corresponding to the second semiconductor layer, a second source electrode and a second drain electrode; a first transparent capacitor electrode connected to the first drain electrode; a first passivation layer on the first transparent capacitor electrode; a second transparent capacitor electrode on the first passivation layer and connected to the second drain electrode, the second transparent capacitor electrode overlapping the first transparent capacitor electrode; a second passivation layer on or over the first passivation layer and the second transparent capacitor electrode; and a first electrode on the second passivation layer and connected to the second transparent capacitor electrode.