Abstract:
A method for receiving a superframe header at a mobile station in a wireless mobile communication system is disclosed. The method comprises receiving a sub-frame including the superframe header and a first data channel and decoding the received superframe header. Herein, the superframe header is located within a predetermined physical frequency band and the pre-determined physical frequency band includes a synchronization channel.
Abstract:
A method for monitoring a downlink control channel, the method performed by a user equipment (UE) configured with multiple carriers includes determining whether to monitor the downlink control channel within either one UE-specific search space or a plurality of UE-specific search spaces, and monitoring the downlink control channel within the plurality of UE-specific search spaces if carrier index is configured, wherein each of the plurality of the UE-specific search spaces is determined based on the carrier index.
Abstract:
A method for receiving data by a relay station (RS) in a wireless communication system includes: receiving radio resource allocation information via an R-PDCCH (R-Physical Downlink Control Channel); and receiving data from a base station (BS) via an R-PDSCH (R-Physical Downlink Shared Channel) indicated by the radio resource allocation information, wherein the radio resource allocation information includes information regarding an allocation of resource blocks in a frequency domain and information regarding an allocation of OFDM symbols in a time domain. Since the radio resource allocation information providing information regarding a time relationship between a control channel transmitted by the BS to a UE and a control channel transmitted by the RS to a UE connected to the RS is provided, the RS can reliably receive a signal transmitted from the BS in a backhaul link between the BS and the RS in a wireless communication system including the RS.
Abstract:
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method for transmitting acknowledgement/negative ACK (ACK/NACK) in a wireless communication system which supports carrier aggregation, and to an apparatus for the method. A method in which a terminal transmits ACK/NACK in a wireless communication system that supports carrier aggregation comprises the following steps: receiving a physical downlink control channel (PDCCH); receiving a physical downlink shared channel (PDSCH) indicated by the PDCCH; and transmitting ACK/NACK for the PDSCH via a physical uplink control channel (PUCCH). A PUCCH format for transmitting ACK/NACK is selected by taking the number of aggregated carriers into account.
Abstract:
A method and an apparatus of transmitting information in a wireless communication system are provided. The method includes transmitting information based on a first resource index through a first antennae and transmitting the information based on a second resource index through a second antennae.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method for transmitting acknowledgement/negative ACK (ACK/NACK) in a wireless communication system which supports carrier aggregation, and to an apparatus for the method. A method in which a terminal transmits ACK/NACK in a wireless communication system that supports carrier aggregation comprises the following steps: receiving a physical downlink control channel (PDCCH); receiving a physical downlink shared channel (PDSCH) indicated by the PDCCH; and transmitting ACK/NACK for the PDSCH via a physical uplink control channel (PUCCH). A PUCCH format for transmitting ACK/NACK is selected by taking the number of aggregated carriers into account.
Abstract:
A method for transmitting, by a base station (BS), reference signals in a wireless communication system, and the BS therefore are discussed. The method according to one embodiment includes transmitting cell-specific reference signals on at least one first antenna port to a relay node (RN); and transmitting user equipment (UE)-specific reference signals on a second antenna port to the BS. A relay physical downlink control channel (R-PDCCH) is demodulated, by the RN, based on either the cell-specific reference signals or the UE-specific reference signals. A type of reference signals among the cell-specific reference signals or the UE-specific reference signals, which is being used to demodulate the R-PDCCH, is configured by a higher layer.
Abstract:
A method and a receiver are described for transmitting control information in a wireless communication system. The receiver is configured to receive a plurality of data units from a transmitter, determine acknowledgement/negative-acknowledgement (ACK/NACK) states for each of the data units; and transmit, to the transmitter, the ACK/NACK states in multiple ACK/NACK states or in a single ACK/NACK state in accordance with a predetermined condition.
Abstract:
According to one embodiment, a method for transmitting, by a user equipment (UE), information in a wireless communication system includes: determining a first information sequence based on a first cyclically shifted base sequence and a first orthogonal sequence by using a first physical uplink control channel (PUCCH) resource for a first antenna, wherein the first PUCCH resource is obtained based on a channel control element (CCE) index related to a physical downlink control channel (PDCCH) and a parameter configured by a higher layer; determining a second information sequence based on a second cyclically shifted base sequence and a second orthogonal sequence by using a second PUCCH resource for a second antenna, wherein the second PUCCH resource is obtained by adding an offset to the first PUCCH resource; transmitting the first information sequence via the first antenna; and transmitting the second information sequence via the second antenna.