Abstract:
A communication system having a receiver with a linear path and a nonlinear path. As the receiver receives a data signal, it adaptively equalizes the received signal, and amplitude-limits the equalized signal in the nonlinear path using a saturable amplifier limiter or the like. A slicer extracts data from the limited equalized received signal. In the linear path, a clock recovery circuit generates a clock signal from the equalized received signal. A delay circuit in the linear path at least partially compensates for propagation delay in the limiter. Having the clock recovery occur in other than the nonlinear path, a low jitter clock is generated. The limiter enhances the vertical opening of the data eye by increasing the rise and fall times of the limited signal, providing more noise margin for the slicer to operate with and a greater timing margin in which to sample the sliced data.
Abstract:
Described embodiments provide for, in a SerDes device, an adaptation process that adjusts data path gain through programmable-bias based on process, voltage, temperature (PVT) and data rate changes. Such adaptation process extends bias current dynamic range, and low frequency gain can be programmed to a desired target range of values for a given variable gain amplifier (VGA) setting at any PVT and data rate corner. A receive (RX) data path structure auto-adapts data path gain through programmable bias based on sensed PVT and data rate changes. The low frequency attenuation/gain range is extended, and can be programmed to a desirable targeted range by a SerDes device RX adaptive process for a given VGA and linear equalizer (LEQ) setting at any given PVT and data rate condition.
Abstract:
Described embodiments provide for, in a SerDes device, an adaptation process that adjusts termination impedance automatically to obtain a tuned termination. The termination adaptation is realized with a ‘biased’ bang-bang phase detector (BBPD) that biases the weights applied to UP and DOWN outputs of the phase detector. Through an optimization process, the system locks to data eye corners, and thereby is able to optimize termination though a predetermined criteria, such as signal to noise ratio (SNR), horizontal eye (H-) margin, vertical eye (V-) margin or joint SNR and H-/V-margin optimization. As part of the receiver equalization, adaptive termination tuning is performed after the SerDes receiver (RX) path is initially powered-up by tuning the termination above and below its current initial setting and performing the optimization process.
Abstract:
In described embodiments, data pattern-based detection of loss of signal (LOS) is employed for a receive path of serializer/deserializer (SerDes) devices. Pattern-based LOS detection allows for detection of data loss over variety of types of connection media, and is generally insensitive to signal attenuation. More specifically, some described embodiments disclose reliable pattern-based detection of LOS across different connection media for incoming receive data when discreet time decision feedback equalization (DFE) is employed.
Abstract:
A communication system having a receiver with a linear path and a nonlinear path. As the receiver receives a data signal, it adaptively equalizes the received signal, and amplitude-limits the equalized signal in the nonlinear path using a saturable amplifier limiter or the like. A slicer extracts data from the limited equalized received signal. In the linear path, a clock recovery circuit generates a clock signal from the equalized received signal. A delay circuit in the linear path at least partially compensates for propagation delay in the limiter. Having the clock recovery occur in other than the nonlinear path, a low jitter clock is generated. The limiter enhances the vertical opening of the data eye by increasing the rise and fall times of the limited signal, providing more noise margin for the slicer to operate with and a greater timing margin in which to sample the sliced data.
Abstract:
In described embodiments, process, voltage, temperature (PVT) compensation in a serializer/deserializer (SerDes) device employs a closed loop adaptation compensation that is incorporated into the SerDes receiver adaptation process. A detection method, where the adapted decision feedback equalizer (DFE) target level (e.g., tap H0) is monitored, employs this DFE target level when implementing a closed loop variable gain amplifier adaptation. The DFE target level in conjunction with the VGA level is used to control the PVT setting to maintain target SerDes data path gain by detecting aPVT corner condition. The detected PVT corner condition is employed to generate a control signal to further adjust the LEQ and DFE data path differential pair gain as required by the PVT condition.
Abstract:
A method of adjusting a post-cursor tap weight in a transmitter FIR filter in a high-speed digital data transmission system. A receiver, over a forward channel, receives a signal from the transmitter and equalizes the received signal using an adaptive analog equalizer coupled to the forward channel and a decision feedback equalizer (DFE) coupled to the analog equalizer. A gain coefficient used to adjust the peaking by the analog equalizer is adapted using an error signal generated by the DFE. The post-cursor tap weight of the transmitter filter is adjusted up or down based on a comparison of the gain coefficient to a set. of limits. The post-cursor tap weight is transmitted to the transmitter over a reverse channel and then equalizers in the receiver readapt. Alternatively, eye opening data and a DFE tap coefficient are used to determine whether the post-cursor tap weight is adjusted up or down.
Abstract:
In described embodiments, data pattern-based detection of loss of signal (LOS) is employed for a receive path of serializer/deserializer (SerDes) devices. Pattern-based LOS detection allows for detection of data loss over variety of types of connection media, and is generally insensitive to signal attenuation. More specifically, some described embodiments disclose reliable pattern-based detection of LOS across different connection media for incoming receive data when discreet time decision feedback equalization (DFE) is employed.
Abstract:
An apparatus comprises a clock and data recovery system, and a loss of lock detector at least partially incorporated within or otherwise associated with the clock and data recovery system. The loss of lock detector is configured to generate a loss of lock signal responsive to phase adjustment requests generated for a clock signal in the clock and data recovery system. By way of example, the loss of lock signal may have a first logic level indicative of the phase adjustment requests occurring at a first rate associated with a lock condition and a second logic level indicative of the phase adjustment requests occurring at a second rate lower than the first rate. Absolute values of respective phase increments each associated with multiple up and down phase requests may be accumulated, and the loss of lock signal generated as a function of the accumulated phase increment absolute values.