摘要:
The present invention relates to an enzyme exhibiting aminopeptidase activity, a method for producing said enzyme, an enzyme preparation containing said enzyme exhibiting aminopeptidase activity, and use of said enzyme for various industrial purposes.
摘要:
This invention is a protease mutant wherein said mutant substitutes the naturally occurring tyrosine amino acids for other amino acids at positions 91, 167, 171, 192, 209, 214, and 263. The protease mutants are used in detergent compositions.
摘要:
The present invention relates to protease variants, stabilized towards the inactivation caused by peroxidase systems, in which protease variants a naturally occurring tyrosine residue has been deleted or substituted with a different amino acid residue at one or more positions. The invention also relates to a method of stabilizing a protease towards the inactivation caused by peroxidase systems, and detergent compositions comprising a protease variant of the invention.
摘要:
The present invention relates to lipase and .alpha.-amylase variants, stabilized towards the inactiviation caused by peroxidase systems, in which variants a naturally occurring tryosine residue has been deleted, substituted with a different amino acid residue at one or more positions. The invention also relates to a method of stabilizing a lipase or an .alpha.-amylase towards the inactivation caused by the preoxidase systems, and detergent compositions comprising a lipase and/or .alpha.-amylase variant of the invention.
摘要:
The present invention relates to a tripeptidyl aminopeptidase, a DNA construct encoding the tripeptidyl aminopeptidase, a method of producing tripeptidyl aminopeptidase and methods of reducing the tripeptidyl aminopeptidase production in cells in which tripeptidyl aminopeptidase activity is undesirable.
摘要:
Lipolytic enzymes with high activity at alkaline pH in the absence of Ca++ can be obtained from filamentous fungi of the genera Gliocladium, Verticillium and Trichophaea and that the lipolytic enzymes are effective for improving the effect of detergents. The lipolytic enzymes have a good washing performance, as expressed by the hydrolysis of oil on textile swatches. The amino acid sequences of the lipolytic enzymes are highly homologous.
摘要:
The invention relates to a conjugate comprising an adiponectin polypeptide, and a first non-polypeptide moiety covalently attached to the adiponectin polypeptide, wherein the adiponectin polypeptide comprises an amino acid residue having an attachment group for said first non-polypeptide moiety, wherein said amino acid residue has been introduced in a position that in the parent adiponectin is occupied by a surface exposed amino acid residue.
摘要:
The present invention relates to polypeptides having laccase activity and isolated nucleic acid sequences encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the nucleic acid sequences as well as methods for producing the polypeptides.
摘要:
The present invention relates to rhamnogalacturonases derived from a strain of Aspergillus japonicus which (a) has a pH-optimum between 6.5 and 7.0; (b) retains at least 80% of the maximal activity throughout the pH range of 5.5-12; (c) has a temperature optimum of about 40.degree. C.; and (d) retains at least 80% of the maximal activity throughout the temperature range of 20.degree.-60.degree. C. The present invention relates to rhamnogalacturonases derived from a stain of Aspergillus aculeatus which (a) has a pH-optimum of about 5.0; (b) retains at least 80% of the maximal activity throughout the pH range of 3-6.5; (c) has a temperature optimum of about 40.degree. C.; and (d) retains at least 80% of the maximal activity throughout the temperature range of 5.degree.-50.degree. C.
摘要:
Methods for producing polypeptide with altered immunogenicity or improved stability properties are disclosed. The methods involve a) expressing a diversified population of nucleotide sequences encoding a polypeptide of interest, b) screening the polypeptides expressed in step a) for function, immunogenicity and/or stability, c) selecting functional polypeptides having altered immunogenicity and/or increased stability, e.g. functional in vivo half-life as compared to the polypeptide of interest, and d) optionally subjecting the nucleotide sequence encoding the polypeptide selected in step c) to one or more repeated cycles of steps a)-c). In a further step the expressed polypeptides of step a) or c) can be conjugated to at least one non-polypeptide moiety.