Abstract:
Methods and systems for hybrid integration of optical communication systems are disclosed and may include receiving continuous wave (CW) optical signals in a silicon photonics die (SPD) from an optical source external to the SPD. The received CW optical signals may be processed based on electrical signals received from an electronics die bonded to the SPD via metal interconnects. Modulated optical signals may be received in the SPD from optical fibers coupled to the SPD. Electrical signals may be generated in the SPD based on the received modulated optical signals and communicated to the electronics die via the metal interconnects. The CW optical signals may be received from an optical source assembly coupled to the SPD and/or from one or more optical fibers coupled to the SPD. The received CW optical signals may be processed utilizing one or more optical modulators, which may comprise Mach-Zehnder interferometer modulators.
Abstract:
Methods and systems for encoding multi-level pulse amplitude modulated signals using integrated optoelectronics are disclosed and may include generating a multi-level, amplitude-modulated optical signal utilizing an optical modulator driven by two or more of a plurality of electrical input signals. The optical modulator may configure levels in the multi-level amplitude modulated optical signal. Drivers may be coupled to the optical modulator, and the plurality of electrical input signals may be synchronized before being communicated to said drivers. Two or more of said plurality of electrical input signals may be selected utilizing one or more multiplexers. The one or more multiplexers may select an electrical input or a complement of the electrical input. Phase addition may be synchronized in a plurality of optical modulator elements in the optical modulator utilizing one or more electrical delay lines. The optical modulator may be integrated on a single substrate.
Abstract:
A method and system for implementing high-speed electrical interfaces between semiconductor dies in optical communication systems are disclosed and may include communicating electrical signals between a first die and a second die via coupling pads which may be located in low impedance points in Tx and Rx paths. The electrical signals may be communicated via one or more current-mode, controlled impedance, and/or capacitively-coupled interfaces. The current-mode interface may include a cascode amplifier stage split between source and drain terminals of transistors on the dies. The controlled-impedance interfaces may include transmission line drivers on a first die and transmission lines on a second die. The capacitively-coupled interfaces may include capacitors formed by contact pads on the dies. The coupling pads may be connected via one or more of: wire bonds, metal pillars, solder balls, or conductive resin. The dies may comprise CMOS and may be coupled in a flip-chip configuration.
Abstract:
Methods and systems for hybrid integration of optical communication systems may comprise in an optical communication system comprising a silicon photonics die and one or more electronics die bonded to said silicon photonics die utilizing metal interconnects: receiving one or more continuous wave (CW) non-modulated optical signals in said silicon photonics die from an optical source external to said silicon photonics die; modulating said one or more received CW non-modulated optical signals in said silicon photonics die using electrical signals received from said one or more electronics die via said metal interconnects; receiving modulated optical signals in said silicon photonics die from one or more optical fibers coupled to said silicon photonics die; generating electrical signals in said silicon photonics die based on said received modulated optical signals; and communicating said generated electrical signals to at least one of said one or more electronics die via said metal interconnects.
Abstract:
Methods and systems for optoelectronics transceivers of a CMOS chip are disclosed and may include receiving optical signals from optical fibers via grating couplers, which may include a guard ring. A CW optical signal may be received from a laser source via optical couplers, and may be modulated using optical modulators, which may be Mach-Zehnder and/or ring modulators. Circuitry in the CMOS chip may drive the optical modulators. The modulated optical signal may be communicated out of the CMOS chip into optical fibers via grating couplers. The received optical signals may be communicated between devices via waveguides. The photodetectors may include germanium waveguide photodiodes, avalanche photodiodes, and/or heterojunction diodes. The CW optical signal may be generated using an edge-emitting and/or a vertical-cavity surface emitting semiconductor laser.
Abstract:
Methods and systems for optoelectronics transceivers integrated on a CMOS chip are disclosed and may include receiving optical signals from optical fibers via grating couplers on a top surface of a CMOS chip, which may include a guard ring. Photodetectors may be integrated in the CMOS chip. A CW optical signal may be received from a laser source via optical couplers, and may be modulated using optical modulators, which may be Mach-Zehnder and/or ring modulators. Circuitry in the CMOS chip may drive the optical modulators. The modulated optical signal may be communicated out of the top surface of the CMOS chip into optical fibers via grating couplers. The received optical signals may be communicated between devices via waveguides. The photodetectors may include germanium waveguide photodiodes, avalanche photodiodes, and/or heterojunction diodes. The CW optical signal may be generated using an edge-emitting and/or a vertical-cavity surface emitting semiconductor laser.
Abstract:
Methods and systems for hybrid integration of optical communication systems are disclosed and may include receiving continuous wave (CW) optical signals in a silicon photonics die (SPD) from an optical source external to the SPD. The received CW optical signals may be processed based on electrical signals received from an electronics die bonded to the SPD via metal interconnects. Modulated optical signals may be received in the SPD from optical fibers coupled to the SPD. Electrical signals may be generated in the SPD based on the received modulated optical signals and communicated to the electronics die via the metal interconnects. The CW optical signals may be received from an optical source assembly coupled to the SPD and/or from one or more optical fibers coupled to the SPD. The received CW optical signals may be processed utilizing one or more optical modulators, which may comprise Mach-Zehnder interferometer modulators.
Abstract:
Methods and systems for encoding multi-level pulse amplitude modulated signals using integrated optoelectronics are disclosed and may include generating a multi-level, amplitude-modulated optical signal utilizing an optical modulator driven by first and second electrical input signals, where the optical modulator may configure levels in the multi-level amplitude modulated optical signal, drivers are coupled to the optical modulator; and the first and second electrical input signals may be synchronized before being communicated to the drivers. The optical modulator may include optical modulator elements coupled in series and configured into groups. The number of optical modular elements and groups may configure the number of levels in the multi-level amplitude modulated optical signal. Unit drivers may be coupled to each of the groups. The electrical input signals may be synchronized before communicating them to the unit drivers utilizing flip-flops. Phase addition may be synchronized utilizing one or more electrical delay lines.
Abstract:
Methods and systems for hybrid integration of optical communication systems may comprise in an optical communication system comprising a silicon photonics die and one or more electronics die bonded to said silicon photonics die utilizing metal interconnects: receiving one or more continuous wave (CW) non-modulated optical signals in said silicon photonics die from an optical source external to said silicon photonics die; modulating said one or more received CW non-modulated optical signals in said silicon photonics die using electrical signals received from said one or more electronics die via said metal interconnects; receiving modulated optical signals in said silicon photonics die from one or more optical fibers coupled to said silicon photonics die; generating electrical signals in said silicon photonics die based on said received modulated optical signals; and communicating said generated electrical signals to at least one of said one or more electronics die via said metal interconnects.
Abstract:
Methods and systems for monolithic integration of photonics and electronics in CMOS processes are disclosed and may include in an optoelectronic transceiver comprising photonic and electronic devices from two complementary metal-oxide semiconductor (CMOS) die with different silicon layer thicknesses for the photonic and electronic devices, the CMOS die bonded together by metal contacts: communicating optical signals and electronic signals to and from said optoelectronic transceiver utilizing a received continuous wave optical signal as a source signal. A first of the CMOS die includes the photonic devices and a second includes the electronic devices. Electrical signals may be communicated between electrical devices to the optical devices utilizing through-silicon vias coupled to the metal contacts. The metal contacts may include back-end metals from a CMOS process. The electronic and photonic devices may be fabricated on SOI wafers, with the SOI wafers being diced to form the CMOS die.