Abstract:
The invention relates to methods for manufacturing a rotor (14) for an electric machine (13), having the following method steps: a) manufacturing a magnetic element (8) by bonding permanent magnets (1, 1′, 1″, 1′″) by means of a first adhesive, each permanent magnet (1, 1′, 1″, 1′″) having a side with a magnetic North pole (N) and a side with a magnetic South pole (S), the permanent magnets (1, 1′, 1″, 1′″) being arranged during bonding such that the sides of the magnetic North poles (N) or the sides of the magnetic South poles (S) form a common underside (3, 3′, 3″, 3′″) of the magnetic elements (8), the first adhesive having a hard consistency in the cured state; and b) bonding the underside of the magnetic element (8) to a yoke (12) by means of a second adhesive, the second adhesive being soft and elastic in the cured state. Furthermore, the invention relates to an associated rotor. The invention permits rational manufacture of a rotor having a permanent magnet for a machine, the permanent magnets being integrally fixed to the yoke of the rotor with high reliability.
Abstract:
The invention relates to methods for manufacturing a rotor (14) for an electric machine (13), having the following method steps: a) manufacturing a magnetic element (8) by bonding permanent magnets (1, 1′, 1″, 1′″) by means of a first adhesive, each permanent magnet (1, 1′, 1″, 1′″) having a side with a magnetic North pole (N) and a side with a magnetic South pole (S), the permanent magnets (1, 1′, 1″, 1′″) being arranged during bonding such that the sides of the magnetic North poles (N) or the sides of the magnetic South poles (S) form a common underside (3, 3′, 3″, 3′″) of the magnetic elements (8), the first adhesive having a hard consistency in the cured state; and b) bonding the underside of the magnetic element (8) to a yoke (12) by means of a second adhesive, the second adhesive being soft and elastic in the cured state. Furthermore, the invention relates to an associated rotor. The invention permits rational manufacture of a rotor having a permanent magnet for a machine, the permanent magnets being integrally fixed to the yoke of the rotor with high reliability.
Abstract:
The invention relates to a drive system comprising a liquid-cooling electric machine (1), and to a method for liquid-cooling the stator winding of said type of machine (1). In order to use said system at very low temperatures and in the most simple way possible, said drive system also comprises a cooling circuit (2) for cooling the liquid of a stator winding of the electric machine (1), a pump (3) for pumping a liquid through the coolant circuit (2), a converter (4) for feeding the stator winding and a control device (5) for controlling the converter in such a manner that said converter, prior to activating the pump (3), feeds a heating flow to the stator winding for heating the cool liquid.
Abstract:
In a method an inner segment is first pre-assembled on each of a number of outer segments by at least one fixing element, so as to produce a plurality of segment modules having each a predetermined air gap between the inner segment and the outer segment. The inner segments and the outer segments are assigned to the rotor or stator of the electrical machine. The inner segments of the plurality of segment modules are fastened to an inner assembly device (for example a hub). The outer segments of the plurality of segment modules are fastened to an outer assembly device (for example a supporting structure). Finally, the fixing elements between the inner segments and the outer segments are removed.
Abstract:
A rotor for an electrical machine has a rotor body and permanent magnets arranged on the circumference of the rotor body, wherein those areas of the circumference of the rotor body which are covered by the permanent magnets have at least one recess and/or that side of the permanent magnets which faces the circumference of the rotor body has at least one recess. Each recess is configured as a slot which extends in parallel relationship to a circumference-proximal side of the permanent magnets. Removably insertable in the recesses are ferromagnetic bars to allow removal of the permanent magnets.
Abstract:
A stator of a permanently excited rotating electric machine has a plurality of segments abutting each other at radially and axially extending segment boundaries. Each segment has a plurality of radially projecting teeth of uniform width and grooves extending in the axial direction and alternatingly arranged in a peripheral direction of the stator. Abutting segments touch each other at the segment boundaries such that an outer tooth of one segment touches an outer tooth of an abutting segment, wherein a sum of the widths of the two teeth touching each other at the corresponding segment boundary is greater than the uniform width of at least a majority of the plurality of teeth of a segment that are not arranged directly at a segment boundary of that segment. Detent moments and/or oscillating moments occurring in a permanently excited rotating electric machine can thereby reduced.
Abstract:
A wind power generator with a closed internal cooling circuit has a stator that is implemented as sheet metal and includes a winding system which forms winding heads at the end faces of the stator. The stator is enclosed by a cooling jacket at least in the region of the laminated core, wherein permanent magnets of a rotor are disposed on a magnet wheel jacket embodied as a hollow shaft. The magnet wheel jacket is connected in a rotationally fixed manner to a shaft or shaft stubs by way of support elements at its end faces, wherein in its interior the hollow shaft has at least one tube whose lateral surface area runs at an equidistant clearance from the magnet wheel jacket. Blowers are mounted at the end faces of the rotor.
Abstract:
An arrangement for cooling an electrical machine is provided. A stator of the electrical machine contains a plurality of stacked laminate plates, each laminate plate having a plurality of slots on one side. The slots of the stacked laminate plates are forming channels, the channels containing metal-winding of electrical coils. A metal cooling-pipe is provided within at least one channel for cooling the laminate plates.
Abstract:
A rotor for an electrical machine has a rotor body and permanent magnets arranged on the circumference of the rotor body, wherein those areas of the circumference of the rotor body which are covered by the permanent magnets have at least one recess and/or that side of the permanent magnets which faces the circumference of the rotor body has at least one recess. Each recess is configured as a slot which extends in parallel relationship to a circumference-proximal side of the permanent magnets. Removably insertable in the recesses are ferromagnetic bars to allow removal of the permanent magnets.
Abstract:
In a method an inner segment is first pre-assembled on each of a number of outer segments by at least one fixing element, so as to produce a plurality of segment modules having each a predetermined air gap between the inner segment and the outer segment. The inner segments and the outer segments are assigned to the rotor or stator of the electrical machine. The inner segments of the plurality of segment modules are fastened to an inner assembly device (for example a hub). The outer segments of the plurality of segment modules are fastened to an outer assembly device (for example a supporting structure). Finally, the fixing elements between the inner segments and the outer segments are removed.