Abstract:
A structure for cooling an electronic device is disclosed. The structure includes a solid heat-conducting layer disposed over the electronic device. The solid heat-conducting layer is a planar surface in contact with the electronic device. The structure further includes a plurality of copper spring elements disposed between the solid heat-conducting layer and the electronic device for providing a heat path from the electronic device and wherein the plurality of spring elements extend in an upper direction away from the electronic device and wherein the plurality of spring elements include a spring for offering resistance when loaded and wherein the spring elements have a smaller profile at a first end in contact with the electronic device, wherein the profile increases in size at a second end in contact with the solid heat-conducting layer.
Abstract:
A cooling structure for an electronic device comprises a plate including a thermally conducting material disposed over the electronic device. The cooling structure includes a first support and a second support. One of the first support and the second support provides compliance in the x-y directions, and the other support provides compliance in the z direction. In another embodiment of the present invention, the plate comprises a material having high thermal conductivity.
Abstract:
A method for writing tracks on a rotating disk media data storage device comprising the steps of: receiving a set of component parameters; and adjusting track pitch for each of the tracks to be written in each disk according to the component parameters. According to another embodiment a disk drive includes at least one disk comprising a two or more of tracks in which the track pitch between each pair of adjacent tracks is set based on component parameters such as the recording head widths. According to another embodiment a servowriter is adapted to perform the method discussed above.
Abstract:
A method for writing timing marks on a rotatable storage medium, such as on a disk in a disk drive, includes the steps of: 1) during a rotation of the disk, detecting the passage of at least a portion of a first timing mark located at a radial trajectory at a first radius of the disk, and 2) during the same rotation of the disk, writing a second timing mark at a second radius of the disk. The second timing mark is located at least one of a) where at least a portion of the second timing mark overlaps at least a portion of the radial trajectory of the first timing mark, and b) where the second timing mark is in close proximity to the radial trajectory of the first timing mark. The second timing mark is written based on different parameters such as a measured time interval, a calculated time interval, and a predetermined delay.
Abstract:
A multi-chip module (MCM) structure comprises more than one semiconductor chip lying in a horizontal plane, the MCM having individual chip contact patches on the chips and a flexible heat sink having lateral compliance and extending in a plane in the MCM and secured in a heat exchange relation to the chips through the contact patches. The MCM has a mismatch between the coefficient of thermal expansion of the heat sink and the MCM and also has chip tilt and chip height mismatches. The flexible heat sink with lateral compliance minimizes or eliminates shear stress and shear strain developed in the horizontal direction at the interface between the heat sink and the chip contact patches by allowing for horizontal expansion and contraction of the heat sink relative to the MCM without moving the individual chip contact patches in a horizontal direction.
Abstract:
According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.
Abstract:
A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.
Abstract:
Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.
Abstract:
A data center cooling system is operated in a first mode; it has an indoor portion wherein heat is absorbed from components in the data center, and an outdoor heat exchanger portion wherein outside air is used to cool a first heat transfer fluid (e.g., water) present in at least the outdoor heat exchanger portion of the cooling system during the first mode. The first heat transfer fluid is a relatively high performance heat transfer fluid (as compared to the second fluid), and has a first heat transfer fluid freezing point. A determination is made that an appropriate time has been reached to switch from the first mode to a second mode. Based on this determination, the outdoor heat exchanger portion of the data cooling system is switched to a second heat transfer fluid, which is a relatively low performance heat transfer fluid, as compared to the first heat transfer fluid. It has a second heat transfer fluid freezing point lower than the first heat transfer fluid freezing point, and the second heat transfer fluid freezing point is sufficiently low to operate without freezing when the outdoor air temperature drops below a first predetermined relationship with the first heat transfer fluid freezing point.
Abstract:
A mold plate to parking location interface includes: a mold plate for holding solder; a fill head with an o-ring for dispensing solder bumps on the mold plate; a parking location for locating the fill head; and a platform between the mold plate and the parking location for relatively moving the fill head from the first location to the second location such that the o-ring decompresses as it passes over the platform.