Abstract:
A cantilever may include a first dielectric layer that has a first intrinsic stress and a second dielectric layer overlying the first dielectric layer that has a second intrinsic stress that is different than the first intrinsic stress. The difference between the first and second intrinsic stresses may cause the cantilever to curve. A second dielectric layer can comprise a plurality of crossbars oriented at an angle relative to a length of the cantilever to reduce curvature in a width direction of the cantilever. The second dielectric layer can be patterned with a waveguide. The cantilever may be piezoelectrically actuated.
Abstract:
Systems and methods for hybrid integration of ultra-low loss waveguide photonic circuits with various efficient on-chip elements are described. The photonic circuits can integrate various elements including (but not limited to): gain, modulation, detection, and nonlinear optical elements. The integrated photonic chips can be manufactured in a flexible, reconfigurable, 3D heterogeneous platform. The integrated photonic chips can cover wavelength ranges from the visible wavelength to infrared wavelength.
Abstract:
An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
Abstract:
Compactly-integrated electronic structures and associated systems and methods are provided. Certain embodiments relate to the ability to integrate nanowire-based detectors with optical components.